Numerical Modeling of Cylindrical Shell Fragmentation

Authors

  • Sergey M. Gertsik Competence and Training Center
  • Vladislav A. Koniukhov Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences
  • Sergey V. Lekomtsev Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences

DOI:

https://doi.org/10.17072/1993-0550-2024-4-21-34

Keywords:

fragmentation, destruction, cylindrical shell, numerical modeling, LOGOS software, probability law of distribution, finite element method

Abstract

Knowledge of the fragmentation of a structure during its rapid destruction is essential for ensuring the safety of people and surrounding objects. The characteristics of fragments and their space-mass distribution obtained as a result of experiments are essentially inhomogeneous. This may be due to the inhomogeneity of the structure made of real materials, which should be taken into account in calculations. The paper presents the results of numerical modeling of the problem of cylindrical shell fragmentation taking into account the probability distribution of the fracture parameter. The calculations are performed in the LOGOS software using the finite element method. Fracture of the shell is realized by separating the nodal bonds. The criterion for the onset of fracture is the exceedance of the critical value of plastic strains. The validity of the obtained results is confirmed by their agreement with the experimental data and convergence of the solution with increasing number of nodal unknowns. The influence of the fracture criterion, which is set as a material constant and as a parameter distributed according to the normal probability law, is analyzed. It is shown that the use of the probabilistic fracture criterion allows predicting the parameters of the fragmentation field, which are qualitatively consistent with the experimental data. It is established that the degree of shell discretization has a significant effect on the fragment parameters, but practically does not change the type of their mass distribution.

References

Taiwo B. O., Gebretsadik A., Abbas H. H., Khishe M., Fissha Y., Kahraman E., Rabbani A., Akinlabi A. A. Explosive utilization efficiency enhancement: An application of machine learning for powder factor prediction using critical rock characteristics // Heli-yon. 2024. Vol. 10, № 12. e33099. URL: https://doi.org/10.1016/j.heliyon.2024.e33099 (дата обращения: 10.07.2024).

Sherpa B. B., Rani R. Advancements in explosive welding process for bimetallic material joining: A review // Journal of Alloys and Metallurgical Systems. 2024. Vol. 6. 100078. URL: https://doi.org/10.1016/j.jalmes.2024.100078 (дата обращения: 10.07.2024).

Isobe D., Jiang R. Explosive demolition planning of building structures using key element index // Journal of Building Engineering. 2022. Vol. 59. 104935. URL: https://doi.org/10.1016/j.jobe.2022.104935 (дата обращения: 10.07.2024).

Miętkiewicz R. High explosive unexploded ordnance neutralization - Tallboy air bomb case study // Defence Technology. 2022. Vol. 18, № 3. P. 524–535. URL: https://doi.org/10.1016/j.dt.2021.03.011 (дата обращения: 10.07.2024).

Osnes K., Dey S., Hopperstad O. S., Børvik T. On the Dynamic Response of Laminated Glass Exposed to Impact Before Blast Loading // Experimental Mechanics. 2019. Vol. 59, № 7. P. 1033–1046. URL: https://doi.org/10.1007/s11340-019-00496-1 (дата обращения: 10.07.2024).

Song S., Wang C., Qiao B., Gu G. Explosion damage effects of aviation kerosene storage tank under strong ignition // Defence Technology. 2024. Vol. 37. P. 27–38. URL: https://doi.org/10.1016/j.dt.2023.12.009 (дата обращения: 10.07.2024).

Zhang Z., Zhang Z., Huang X. Experimental study on the impact response of the poly-urea-coated 3D auxetic lattice sandwich panels subjected to air explosion // Composite Structures. 2023. Vol. 323. 117500. URL:https://doi.org/10.1016/j.compstruct.2023.117500 (дата обращения: 10.07.2024).

Hou L., Li Y., Qian X., Shu C., Yuan M., Duanmu W. Large-scale experimental investigation of the effects of gas explosions in underdrains // Journal of Safety Science and Resilience. 2021. Vol. 2, № 2. P. 90–99. URL: https://doi.org/10.1016/j.jnlssr.2021.03.001 (дата обращения: 10.07.2024).

Osnes K., Holmen J. K., Hopperstad O. S., Børvik T. Fracture and fragmentation of blast-loaded laminated glass: An experimental and numerical study // International Journal of Impact Engineering. 2019. Vol. 132. 103334. URL: https://doi.org/10.1016/j.ijimpeng.2019.103334 (дата обращения: 10.07.2024).

Вильдеман В. Э., Феклистова Е. В., Мугатаров А. И., Муллахметов М. Н., Кучуков А. М. Аспекты численного моделирования процессов разрушения упруго-хрупких тел // Вычислительная Механика Сплошных Сред. 2023. Т. 16, № 4. С. 420–429. URL: https://doi.org/10.7242/1999-6691/2023.16.4.35 (дата обращения: 10.07.2024).

Li M., Zhu Z., Liu R., Liu B., Zhou L., Dong Y. Study of the effect of empty holes on propagating cracks under blasting loads // International Journal of Rock Mechanics and Mining Sciences. 2018. Vol. 103. P. 186–194. URL: https://doi.org/10.1016/j.ijrmms.2018.01.043 (дата обращения: 10.07.2024).

Tian S., Yan Q., Du X., Chen F., Zhang B. Experimental and numerical studies on the dynamic response of precast concrete slabs under blast load // Journal of Building Engineering. 2023. Vol. 70. 106425. URL: https://doi.org/10.1016/j.jobe.2023.106425 (дата обращения: 10.07.2024).

Qi S., Zhi X., Fan F., Flay R.G.J. Probabilistic blast load model for domes under external surface burst explosions // Structural Safety. 2020. Vol. 87. 102004. URL: https://doi.org/10.1016/j.strusafe.2020.102004 (дата обращения: 10.07.2024).

Zhou L., Li X., Yan Q. Dynamic response and vulnerability analysis of pier under near-field underwater explosion // Engineering Failure Analysis. 2024. Vol. 155. 107749. URL: https://doi.org/10.1016/j.engfailanal.2023.107749 (дата обращения: 10.07.2024).

Gan N., Liu L. T., Yao X. L., Wang J. X., Wu W. B. Experimental and numerical investigation on the dynamic response of a simplified open floating slender structure subjected to underwater explosion bubble // Ocean Engineering. 2021. Vol. 219. 108308. URL: https://doi.org/10.1016/j.oceaneng.2020.108308 (дата обращения: 10.07.2024).

He Z., Du Z., Zhang L., Li Y. Damage mechanisms of full-scale ship under near-field underwater explosion // Thin-Walled Structures. 2023. Vol. 189. 110872. URL: https://doi.org/10.1016/j.tws.2023.110872 (дата обращения: 10.07.2024).

Kishore K. B., Gangolu J., Ramancha M. K., Bhuyan K., Sharma H. Performance-based probabilistic deflection capacity models and fragility estimation for reinforced concrete column and beam subjected to blast loading // Reliability Engineering & System Safety. 2022. Vol. 227. 108729. URL: https://doi.org/10.1016/j.ress.2022.108729 (дата обращения: 10.07.2024).

Huang X., Yue Y., Zhu B., Chen Y. Failure analysis of underground concrete silo under near-field soil explosion // Tunnelling and Underground Space Technology. 2024. Vol. 147. 105696. URL: https://doi.org/10.1016/j.tust.2024.105696 (дата обращения: 10.07.2024).

Zhou X.-Q., Huang B.-G., Wang X.-Y., Xia Y. Deep learning-based prediction of structural responses of RC slabs subjected to blast loading // Engineering Structures. 2024. Vol. 311. 118184. URL: https://doi.org/10.1016/j.engstruct.2024.118184 (дата обращения: 10.07.2024).

Widanage C., Mohotti D., Lee C. K., Wijesooriya K., Meddage, D. P. P. Use of explainable machine learning models in blast load prediction // Engineering Structures. 2024. Vol. 312. 118271. URL: https://doi.org/10.1016/j.engstruct.2024.118271 (дата обращения: 10.07.2024).

Zhang H., Xu Y., Xiao L., Zhen C. Physics-informed machine learning model for pre-diction of ground reflected wave peak overpressure // Defence Technology. 2024. URL: https://doi.org/10.1016/j.dt.2024.06.004 (дата обращения: 10.07.2024).

Singh K., Gardoni P., Stochino F. Probabilistic models for blast parameters and fragility estimates of steel columns subject to blast loads // Engineering Structures. 2020. Vol. 222. 110944. URL: https://doi.org/10.1016/j.engstruct.2020.110944 (дата обращения: 10.07.2024).

Randers-Pehrson G., Bannister K. A. Airblast Loading Model for DYNA2D and DYNA3D. U.S. Army Research Laboratory. 1997.

Пакет программ "ЛОГОС" [Электронный ресурс]. URL: http://logos.vniief.ru/ (дата обращения: 10.07.2024).

Belytschko T., Lin J. I., Tsay C.-S. Explicit algorithms for the nonlinear dynamics of shells // Computer Methods in Applied Mechanics and Engineering. 1984. Vol. 42, №2. P. 225–251. URL: https://doi.org/10.1016/0045-7825(84)90026-4 (дата обращения: 10.07.2024).

Hughes T. J. R., Liu W. K. Nonlinear finite element analysis of shells-part II. two-dimensional shells // Computer Methods in Applied Mechanics and Engineering. 1981. Vol. 27, № 2. P. 167–181. URL: https://doi.org/10.1016/0045-7825(81)90148-1 (дата обращения: 10.07.2024).

Wang K., Chen P., Sun X., Liu Y., Meng J., Li X., Zheng X., Xiao C. Fracture behavior and mechanism of highly fragmented steel cylindrical shell under explosive loading // Defence Technology. 2024. Vol. 36. P. 122–132. URL: https://doi.org/10.1016/j.dt.2024.02.004 (дата обращения: 10.07.2024).

An X., Ye P., Liu J., Tian C., Feng S., Dong Y. Dynamic fracture and fragmentation characteristics of metal cylinder and rings subjected to internal explosive loading // Materials. 2020. Vol. 13, № 3. 778. URL: https://doi.org/10.3390/ma13030778 (дата обращения: 10.07.2024).

Физика взрыва / под ред.: Л. П. Орленко. М.: Физматлит, 2004. Т. 2. 656 с.

Published

2024-12-24

How to Cite

Gertsik С. М., Koniukhov В. А., & Lekomtsev С. В. (2024). Numerical Modeling of Cylindrical Shell Fragmentation. BULLETIN OF PERM UNIVERSITY. MATHEMATICS. MECHANICS. COMPUTER SCIENCE, (4 (67), 21–34. https://doi.org/10.17072/1993-0550-2024-4-21-34