Numerical Analysis of Natural Frequencies of Three-layer Plate under Temperature Load
DOI:
https://doi.org/10.17072/1993-0550-2024-3-23-34Keywords:
plates, natural frequencies, buckling, prestressAbstract
One of the options for controlling the dynamic state of thin-walled structures is the creation of prestress state within. Stress field can be induced by various actuators, smart materials or plastic deformation. Deformations arising from uneven temperature distribution, different coefficient of thermal expansion of the materials or boundary conditions also affect the natural frequencies. This can lead to undesirable phenomena such as loss of stability or spectrum moving into the region of frequencies subject to resonance. In this paper, the influence of tempera-ture loading on the natural frequencies of a three-layer plate is investigated by the finite element method. The obtained solution of the spectral problem is compared with the results of other authors. Plates with different configurations and boundary conditions are considered. The relative change of the plate first three natural frequencies on temperature load are received. It is shown that the resulting prestressed state has poor effect on natural frequencies free-edges plate. The results of numerical calculations for a plate clamped on both sides demonstrate that with increasing stiffness, the critical temperatures also increase.References
Pradeep V., Ganesan N., Bhaskar K. Vibration and thermal buckling of composite sandwich beams with viscoelastic core // Compos. Struct. 2007. Vol. 81, № 1. P. 60–69.
Prokudin O.A. et al. Dynamic characteristics of three-layer beams with load-bearing layers made of alumino-glass plastic // PNRPU Mech. Bull. 2020. Vol. 2020, № 4. P. 260–270.
Meyers C.A., Hyer M.W. Thermal buckling and postbuckling of symmetrically laminated composite plates // J. Therm. Stress. 1991. Vol. 14, № 4. P. 519–540.
Prabhu M.R., Dhanaraj R. Thermal buckling of laminated composite plates // Comput. Struct. 1994. Vol. 53, № 5. P. 1193–1204.
Chen L.W., Chen L.Y. Thermal buckling of laminated composite plates // J. Therm. Stress. 1987. Vol. 10, № 4. P. 345–356.
Azzara R., Carrera E., Pagani A. Nonlinear and linearized vibration analysis of plates and shells subjected to compressive loading // Int. J. Non. Linear. Mech. 2022. Vol. 141. P. 103936.
Álvarez J.G., Bisagni C. A study on thermal buckling and mode jumping of metallic and composite plates // Aerospace. 2021. Vol. 8, № 2. P. 1–17.
Tong B. et al. Free vibration analysis of fiber-reinforced composite multilayer cylindrical shells under hydrostatic pressure // J. Sound Vib. 2024. Vol. 587. P. 118511.
Kuo S.Y. Flutter of thermally buckled angleply laminates with variable fiber spacing // Compos. Part B Eng. 2016. Vol. 95. P. 240–251.
Бочкарев С.А., Лекомцев С.В., Матвеенко В.П. Собственные колебания и устойчивость функционально-градиентных цилиндрических оболочек вращения под действием механических и температурных нагрузок // Механика композиционных материалов и конструкций. 2015. Vol. 21, № 2. P. 206–220.
Bochkarev S.A., Lekomtsev S.V. Natural vibrations of heated functionally graded cylindrical shells with fluid // PNRPU Mech. Bull. 2015. Vol. 2015, № 4. P. 19–35.
Bochkarev S.A., Lekomtsev S.V., Matveenko V.P. Hydrothermoelastic Stability of Functionally Graded Circular Cylindrical Shells Containing a Fluid // Mech. Compos. Mater. 2016. Vol. 52, № 4. P. 507–520.
Azzara R. et al. Vibration analysis of thermally loaded isotropic and composite beam and plate structures // J. Therm. Stress. 2023. Vol. 46, № 5. P. 369–386.
Champneys A.R. et al. Happy Catastrophe: Recent Progress in Analysis and Exploitation of Elastic Instability // Front. Appl. Math. Stat. 2019. Vol. 5. P. 1–30.
Reis P.M. A Perspective on the Revival of Structural (In) Stability with Novel Opportunities for Function: From Buckliphobia to Buckliphilia // J. Appl. Mech. Trans. ASME. 2015. Vol. 82, № 11. P. 1–4.
Zienkiewicz O. The finite element method in structural and soild mechanics / O. Zienkiewicz, Y. Cheung Citation Key: zienkiewicz1967finite. – McGraw Hill, London, 1967.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Александр Олегович Каменских
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are published under license Creative Commons Attribution 4.0 International (CC BY 4.0).