Theoretical and Practical Aspects Building Recommendation Models: Typology, Architecture and Directions Design

Authors

  • Andrey V. Sokolov Perm State Univesity, Innopolis University
  • Ivan A. Sychev Perm State Univesity
  • Olga L. Sokolova Perm State Univesity
  • Darya B. Volkova Perm State Univesity
  • Ilya P. Seletkov Perm State Univesity
  • Dmitriy L. Yashichev Perm State Univesity
  • Leonid N. Yasnitsky Perm State Univesity

DOI:

https://doi.org/10.17072/1993-0550-2024-3-64-77

Keywords:

recommender systems, recommendation systems, neural networks, recurrent neural network, algorithms for recommender systems, multilayer perceptron, convolutional neural network,, graph neural network

Abstract

The article is devoted to the study of promising areas of designing a recommender system for the pre-order and delivery service RapiDo with an emphasis on deep learning methods and problems of models at a cold start. The authors analyze existing types of recommender systems, their features in pre-order and delivery services and aspects of insufficient efficiency of modern models associated with the lack of consideration of the order context, individual user preferences, irrelevance of the data used and the lack of feedback. The article considers the main types of recommender systems used by the largest Russian delivery platforms and user information that services use when building their recommender models, and also highlights the key areas of designing the RapiDo recommender system, taking into account the need to work with limited data at early stages. The authors pay special attention to the architectures of recommender models based on deep learning methods, considering more than a dozen of the most popular options. Promising approaches are analyzed, including adaptive learning based on user feedback, collaborative filtering using demographic data, and hybrid mechanisms that combine different methods to improve the accuracy and stability of predictions. The paper presents the first results of the study and highlights the importance of integrating deep learning into the RapiDo recommendation system to achieve high model accuracy and address the problem of insufficient data at early stages.

References

Yuanzhe Peng. A Survey on Modern Recommendation System Based on Big Data // Cornell University. 2022.

Сейдаметова З.С. Системы рекомендаций в электронной коммерции / З.С. Сейдаметова // Ученые записи Крымского инженерно-педагогического университета. 2018. № 3(61). С. 121–127. Меньшикова Н.В., Портнов И.В., Николаев И.Е. / Обзор рекомендательных систем и возможности учета контекста при формировании индивидуальных рекомендаций // Academy. 2016. № 6(9). С. 22.

Меньшикова Н.В., Портнов И.В., Николаев И.Е. Обзор рекомендательных систем и возможности учета контекста при формировании индивидуальных рекомендаций // Academy. 2016. № 6(9). С. 22.

Хорошие свойства рекомендательных систем // Школа анализа данных. URL: https://education.yandex.ru/handbook/ml/article/horoshie-svojstva-rekomendatelnyh-sistem (дата обращения: 26.05.2024).

Овечкин А.В. (студент). Проектирование рекомендательной системы на основе нейронной сети. НИТУ "МИСИС". Россия, г. Москва. Научно-образовательный журнал для студентов и преподавателей "StudNet" № 4/2022.

Парнев А.В. Использование нейронных сетей в рекомендательных системах. Российский технологический университет // Инновации. Наука. Образование. 2021. № 35. С. 456-465.

Карпов Н. (доцент каф. ПМИ, НИУ ВШЭ, Нижний Новгород). Построение рекомендательных систем с использованием нейронных сетей. New Tang Dynasty Television (ntd.tv). Нью Йорк, США. Научно-учебная группа "Анализ мультимедийных данных" НИУ ВШЭ, Нижний Новгород.

Article Neural Collaborative Filtering with Ontologies for Integrated Recommendation Systems, Sensors MDPI, Rana Alaa Eldeen Ahmed, Manuel Fernández-Veiga and Mariam Gawich.

Review A Survey of Recommendation Systems: Recommendation Models, Techniques, and Application Fields, Electronics MDPI, Hyeyoung Ko, Suyeon Lee, Yoonseo Park and Anna Choi.

A Survey on Modern Recommendation System Based on Big Data, Yuanzhe Peng, Department of Electrical and Computer Engineering, University of Miami.

Эволюция рекомендаций ресторанов в Delivery Club. Ч. 1 // Хабр: [сайт] - 2018. URL: https://habr.com/ru/companies/deliveryclub/articles/656505/ (дата обращения: 18.11.2023).

Salunke, Tanmayee & Nichite, Unnati. (2022). Recommender Systems in Ecommerce. 10.13140/RG.2.2.10194.43202.

Рекомендательная система: введение в проблему холодного старта // Хабр: [сайт] 2013. RL: https://habr.com/ru/companies/surfingbird/articles/168733/ (дата обра-щения: 18.11.2023).

Ясницкий Л.Н., Петров А.М., Сичинава З.И. Сравнительный анализ алгоритмов нейросетевого детектирования лжи // Известия вузов. Поволжский регион. Технические науки. 2010. № 1. URL: https://cyberleninka.ru/article/n/sravnitelnyy-analiz-algoritmov-neyrosetevogo-detektirovaniya-lzhi (дата обращения: 20.11.2023).

Яндекс Правовые Документы: официальный сайт. URL: https://yandex.ru/legal/recommendations/#index__eats (дата обращения: 20.11.2023).

Самокат. Правила применения рекомендательных технологий: официальный сайт. URL: https://samokat.ru/static/legal/recommendation_technologies_-policy.html (дата обращения: 20.11.2023).

Сбер Маркет. Правила применения рекомендательных технологий: официальный сайт. URL: https://sbermarket.ru/sp/recommendations (дата обращения 21.11.2023).

Лента. Правила применения рекомендательных технологий: официальный сайт. URL: https://lenta.com/pokupatelyam/recommendation-technologies/ (дата обра-щения 21.11.2023).

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. Wide and Deep Learning for Recommender Systems. June 2016.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural Collaborative Filtering. August 2017.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction. March 2017.

Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun. DeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems. May 2018.

He, Xiangnan & Chua, Tat-Seng. Neural Factorization Machines for Sparse Predictive Analytics. 2017.

Naumov, Maxim & Mudigere, Dheevatsa & Shi, HaoJun & Huang, Jianyu & Sundaraman, Narayanan & Park, Jongsoo & Wang, Xiaodong & Gupta, Udit & Wu, Carole-Jean & Azzolini, Alisson & Dzhulgakov, Dmytro & Mallevich, Andrey & Cherniavskii, Ilia & Lu, Yinghai & Krishnamoorthi, Raghuraman & Yu, Ansha & Kondratenko, Volodymyr & Pereira, Stephanie & Chen, Xianjie & Smelyanskiy, Misha. Deep Learning Recommendation Model for Personalization and Recommendation Systems. 2019.

Wang, Xiang & He, Xiangnan & Wang, Meng & Feng, Fuli & Chua, Tat-Seng. Neural Graph Collaborative Filtering. 2019.

Kipf, Thomas & Welling, Max. Semi-Supervised Classification with Graph Convo-lutional Networks. 2016.

Xiao Wang, Ruijia Wang, Chuan Shi, Guojie Song, Qingyong Li Multi-Component Graph Convolutional Collaborative Filtering. 2019.

Veličković, Petar & Cucurull, Guillem & Casanova, Arantxa & Romero, Adriana & Lio, Pietro & Bengio, Y. Graph Attention Networks. 2017.

Wu, Le & Li, Junwei & Sun, Peijie & Hong, Richang & Ge, Yong & Wang, Meng. DiffNet++: A Neural Influence and Interest Diffusion Network for Social Recommenda-tion. IEEE Transactions on Knowledge and Data Engineering. 2020. P. 1–1. 10.1109/TKDE.2020.3048414.

Якупов Д.Р., Намиот Д.Е. Рекомендательные системы на основе сессий – модели и задачи // International Journal of Open Information Technologies. 2022. № 7. С. 128–152.

Published

2024-10-16

How to Cite

Sokolov А. В., Sychev И. А., Sokolova О. Л., Volkova Д. Б., Seletkov И. П., Yashichev Д. Л., & Yasnitsky Л. Н. (2024). Theoretical and Practical Aspects Building Recommendation Models: Typology, Architecture and Directions Design. BULLETIN OF PERM UNIVERSITY. MATHEMATICS. MECHANICS. COMPUTER SCIENCE, (3 (66), 64–77. https://doi.org/10.17072/1993-0550-2024-3-64-77