Comparative Evaluation of Clustering Methods in Working With Big Data

Authors

  • Elena V. Panferova Tula State Lev Tolstoy Pedagogical University
  • Roman A. Matushin Tula State Lev Tolstoy Pedagogical University

DOI:

https://doi.org/10.17072/1993-0550-2024-2-61-67

Keywords:

Big Data, clustering, sampling, algorithm, cluster analysis, metric, visualization, algorithmic complexity

Abstract

The paper considers the problems of using cluster analysis methods in the tasks of processing, analyzing and storing structured and unstructured large-volume data and evaluates the feasibility of their use in various aspects of working with Big Data. The aim of the work is to identify the most preferred of the common data clustering algorithms. To do this, the task was set to conduct a comparative evaluation of the following popular algorithms: hierarchical clustering, k-means, DBSCAN, OPTICS and CURE. The algorithmic complexity of the methods is considered, the stability of algorithms to noise and emissions is analyzed, as well as the potential possibilities of visualizing their results and the scope of economic application are indicated. Conclusions are drawn about the advantages and disadvantages of each presented algorithm when used in the field of Big Data and about the most preferred methods of cluster analysis in various aspects of working with big data.

References

Goodfellow Y., Bengio A. Courville, Deep Learning / Adaptive Computation and Machine Learning series // The MIT Press, 2016.

Даниленко А.Н. Структуры данных и анализ сложности алгоритмов: учеб. пособие / Самара: Изд-во Самарского университета, 2018. 76 с.

Data clustering: a review / A. K. Jain, M. N. Murty, P. J. Flynn // ACM Computing Surveys. 1999. № 31(3). P. 264–323.

K-means // ScikitLearn: URL: https://scikit-learn.org/stable/modules/clustering.html#k-means (дата обращения: 03.04.2024).

A density-based algorithm for discovering clusters in large spatial databases with noise / Ester Martin, Kriegel Hans-Peter, Sander Jörg, Xu Xiaowei // Proceedings KDD'96. 1996. № 34. P. 226-231.

GO-DBSCAN: Improvements of DBSCAN Algorithm Based on Grid / Feng L., Liu K., Tang F., Meng Q. // 2017. vol. 9. no. 3, pp. 151.

OPTICS: ordering points to identify the clustering structure / Ankerst M., Breunig [и др.] // Proceedings SIGMOD '99. 1999. № 2. P. 49–60.

Data mining: Concepts and Techniques / Han J., Kamber M., Pei J. // 2012. Morgan Kaufmann Series, Waltham, USA.

Basic Understanding of CURE Algorithm // Geeksforgeeks: URL: https://www.geeks forgeeks.org/basic-understanding-of-cure-algorithm/ (дата обращения: 03.04.2024).

CURE: An Efficient Clustering Algorithm for Large Databases / Guha S., Rastogi R., Kyuseok S. // 1998. ACM SIGMOD Conference, vol. 27, no. 2, pp. 73-84.

Кластеризация пространственных данных – плотностные алгоритмы и DBCSAN // КАРТЕТИКА: URL: https://cartetika.ru/ tpost/k05o2ndpf1-klasterizatsiya-prostranst-vennih-dannih (дата обращения: 11.04.2024).

CURE Algorithm // Deepgram: URL: https:// deepgram.com/ai-glossary/cure-algorithm (дата обращения: 11.04.2024).

Published

2024-06-28

How to Cite

Panferova Е. В., & Matushin Р. А. (2024). Comparative Evaluation of Clustering Methods in Working With Big Data. BULLETIN OF PERM UNIVERSITY. MATHEMATICS. MECHANICS. COMPUTER SCIENCE, (2 (65), 61–67. https://doi.org/10.17072/1993-0550-2024-2-61-67