Experimental Study of Stress Concentration Near the Tips of V-shaped Cracks of Different Depths Filled With Various Materials

Authors

  • Andrey Yu. Fedorov Institute of Continuous Media Mechanics UB RAS
  • Elizaveta B. Galkina Institute of Continuous Media Mechanics UB RAS
  • Aleksey I. Slobodinyuk Institute of Technical Chemistry UB RAS

DOI:

https://doi.org/10.17072/1993-0550-2023-4-80-88

Keywords:

stress singularity, stress concentration, closed bi-material wedge, V-notch

Abstract

One of the ways to eliminate the stress concentration in the vicinity of tips of surface cracks (V-shaped notches) is to fill the crack cavity with material. The effectiveness of this variant depends on the crack opening angle, the properties of the original and filler materials, and the strength of adhesion between the filler and basic materials. The solutions to the problem of a crack with a filling material obtained in the framework of the theory of elasticity revealed a singular behavior of stresses in the vicinity of crack tips. The analysis of the solutions obtained demonstrate that at a certain combination of V-notch angles and material properties there are no singular solutions, which is the best option for eliminating stress concentration. In addition, it is shown that in case of singular solutions, the level of stress concentration depends on the nature of the stress singularity. It should be noted however that these results are of a qualitative nature. In this paper, based on theoretical results, we present the results of experimental study, which give a quantitative estimate of the level of stress concentration in the samples with a V-shaped notch filled with material at different values of the notch depth and notch angles and various mechanical characteristics of filling materials.

References

Чобанян К.С. Напряжения в составных упругих телах. Ереван: Изд-во АН АрмССР, 1987. 338 с.

Wu Z. Design free of stress singularities for bi-material components // Compos. Struct. 2004. Vol. 65, № 3–4. P. 339–345.

Xu L. R., Kuai H., Sengupta S. Dissimilar material joints with and without free-edge stress singularities: Part I. A biologically inspired design // Exp. Mech. 2004. Vol. 44, № 6. P. 608–615.

Xu L.R., Sengupta S. Dissimilar material joints with and without free-edge stress singularities: Part II. An integrated numerical analysis // Exp. Mech. 2004. Vol. 44, No. 6. P. 616–621.

Wang P., Xu L.R. Convex interfacial joints with least stress singularities in dissimilar materials // Mech. Mater. 2006. Vol. 38, № 11. P. 1001–1011.

Baladi A., Arezoodar A.F. Dissimilar materials joint and effect of angle junction on stress distribution at interface // International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering. 2011. Vol. 5, № 7. P. 1184–1187.

Борзенков С.М., Матвеенко В.П. Оптимизация упругих тел в окрестности особых точек // Изв. РАН. МТТ. 1996. № 2. С. 93–100.

Матвеенко В.П., Федоров А.Ю. Оптимизация геометрии составных упругих тел как основа совершенствования методик испытаний на прочность клеевых соединений // Вычислительная механика сплошных сред. 2011. Т. 4, № 4. С. 63–70.

Fedorov A.Yu., Matveenko V.P. Optimization of geometry and mechanical characteristics of elastic bodies in the vicinity of singular points // Acta Mech. 2018. Vol. 229, № 2. P. 645–658.

Fedorov A.Yu., Matveenko V.P. Designing of in-terlayers between materials with minimum stress level at the interface // Int. J. Adhes. Adhes. 2021. Vol. 111. P. 102963.

Bogy D.B. Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading // J. Appl. Mech. 1968. Vol. 35, № 3. P. 460–466.

Dempsey J.P., Sinclair G.B. On the singular behavior at the vertex of a bi-material wedge // Journal of Elasticity. 1981. Vol. 11, № 3. P. 317–327.

Paggi M., Carpinteri A. On the stress singularities at multimaterial interfaces and related analogies with fluid dynamics and diffusion // Appl. Mech. Rev. 2008. Vol. 61, № 2. P. 020801.

Sinclair G.B. Stress singularities in classical elasticity – II: Asymptotic identification. Appl. Mech. Rev. 2004. Vol. 57, № 5. P. 385–439.

Bogy D.B., Wang K.C. Stress singularities at interface corners in bonded dissimilar isotropic elastic materials // Int. J. Solids Struct. 1971. Vol. 7, № 8. P. 993–1005.

Chen D.H., Nisitani H. Singular stress field near the corner of jointed dissimilar materials // J. Appl. Mech. 1993. Vol. 60, № 9. P. 607–611.

Fedorov A.Yu., Matveenko V.P. Numerical and applied results of the analysis of singular solutions for a closed wedge consisting of two dissimilar materials // Acta Mech. 2020. Vol. 231, № 7. P. 2711–2721.

Fedorov A., Galkina E. Experimental study of the effectiveness of stress reduction near V-shaped notch filled with a certain material // Procedia Structural Integrity. 2023. Vol. 50. P. 83–90.

Williams M.L. Stress singularities resulting from various boundary conditions in angular corners of plates in extension // J. Appl. Mech. 1952. Vol. 19, № 4. P. 526–528.

Dundurs J. Discussion: "Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading" (Bogy, D. B., 1968, ASME J. Appl. Mech., 35, pp. 460–466) // J. Appl. Mech. 1969. Vol. 36, № 3. P. 650–652.

Матвеенко В.П., Севодин М.А., Севодина Н.В. Приложения метода Мюллера и принципа аргумента к задачам на собственные значения в механике деформируемого твердого тела // Вычислительная механика сплошных сред. 2014. Т. 7, № 3. С. 331–336.

Slobodinyuk D., Slobodinyuk A., Strelnikov V., Kiselkov D. Simple and efficient synthesis of oligoetherdiamines: hardeners of epoxyurethane oligomers for obtaining coatings with shape memory effect // Polymers. 2023. Vol. 15, № 11. P. 2450.

Published

2023-12-19

How to Cite

Fedorov А. Ю., Galkina Е. Б., & Slobodinyuk А. И. (2023). Experimental Study of Stress Concentration Near the Tips of V-shaped Cracks of Different Depths Filled With Various Materials. BULLETIN OF PERM UNIVERSITY. MATHEMATICS. MECHANICS. COMPUTER SCIENCE, (4 (63), 80–88. https://doi.org/10.17072/1993-0550-2023-4-80-88