Motion Equations of Rigid Bodies Systems with Closed Kinematic Chains in Hamiltonian Variables
DOI:
https://doi.org/10.17072/1993-0550-2022-4-18-28Keywords:
multibody system, equations of motion, dynamic, mathematical modeling, generalized coordinates, Poisson impulses, matrix-geometric methodAbstract
Constructing methods of mathematical models for mechanical systems with closed kinematic loops are considered. All connections are holonomic. At the first stage, the mechanical system is reduced to a system with a tree structure by certain vertices (bodies) splitting in the original graph. The motion equations are constructed in matrix form with respect to Hamiltonian variables: generalized coordinates and impulses. At the second stage, additional constraints are taken into account in the motion equations using Lagrange multipliers at the level of kinematic relations. These connections lead to closure of kinematic chains. The motion equations are formed according to recurrent formulas using a minimum set of primary information about the structure, geometric, kinematic, mass-inertial and power characteristics of a mechanical system. Iterative and finite algorithmsfor solving the obtained equations with respect to the integration variables are constructed. The wholeprocess of primary information preparation is demonstrated in the formation of a mathematical model in the proposed form on the example of one mechanical system with two closed cycles. The simulation results show that the algorithms described in the article provide a numerical solution that is more resistant to computational errors than methods based on the classical approach, in which the motions equation are closed by doubly differentiated equations of additional constraints.References
Иванов В.Н. Матричные уравнения движения систем твердых тел в гамильтоновых переменных. Системы со структурой дерева // Вестник Пермского университета. Математика. Механика. Информатика. 2019. Вып. 3(46). С. 38–46.
Иванов В.Н. Матричные уравнения движения систем твердых тел в гамильтоновых переменных. Системы с замкнутыми цепями // Вестник Пермского университета. Математика. Механика. Информатика. 2019. Вып. 4(47). С. 13–20.
Иванов В.Н. Алгоритмы решения уравнений движения в импульсах Пуассона систем твердых тел со структурой дерева // Вестник Пермского университета. Математика. Механика. Информатика. 2017. Вып. 4(39). С. 25–31.
Голуб Дж., Ван Лоун Ч. Матричные вычисления. М.: Мир, 1999. 548 c.
Шевцов Г.С. Численные методы линейной алгебры: учеб. пособие / Г.С. Шевцов, О.Г. Крюкова, Б.И. Мызникова. М.: Финансы и статистика: ИНФРА-М, 2008. 480 с.
Суслов Г.К. Теоретическая механика. М.: Гостехиздат, 1946. 656с.
Featherstone R. Rigid Body Dynamics Algorithms. New York: Springer, 2008. 272 p.
Wittenburg J. Dynamics of multibody systems. Berlin: Springer-Verlag, 2008. 223 p.
Fan-Chung Tseng, Zheng-Dong Ma, Gregory M. Hulbert. Efficient numerical solution of constrained multibody dynamics systems // Computer Methods in Applied. Mechanics and Engineering. 192 (2003). P. 439–472.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Владимир Николаевич Иванов
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are published under license Creative Commons Attribution 4.0 International (CC BY 4.0).