Description of the viscoelastic properties of low- and high-filled elastomeric nano-composites

Authors

  • Vasiliy Kislitsyn Perm State University
  • Ksenia Mokhireva Institute of Continuous Media Mechanics of the Ural branch of the Russian Academy of Science

DOI:

https://doi.org/10.17072/1993-0550-2021-4-19-24

Keywords:

viscoelastic properties, finite deformations, elastomeric nanocomposites

Abstract

In this work, an analytical solution is found for the change in the dissipative (inelastic) part of the stress tensor at a constant rate of uniaxial loading of the material within the framework of a new thermodynamic model of the behavior of viscoelastic materials. At the same time, a fairly accurate coincidence of the theoretical curve constructed on the basis of the obtained solution with the experimental results was demonstrated. For this, uniaxial tests with nested loading cycles were carried out for samples of low- and high-filled elastomeric nanocomposites with various fillers. At each section of loading and unloading, time holdings were set, which made it possible to neglect the temporal processes taking place in the material, this makes it possible to experimentally find the equilibrium deformation curve. The resulting equilibrium curve can be described using the elastic potential. Having determined the equilibrium (elastic) and finding the dissipative (inelastic) parts of the stress tensor, the viscoelastic response of the considered elastomeric materials was described with high accuracy.

References

Кислицын В.Д., Мохирева К.А. Описание вязкоупругих свойств эластомерного материала в случае одноосного растяжения с постоянной скоростью: материалы Всерос.науч.-практ. конф. молодых ученых с междунар. участием ʺМатематика и междисциплинарные исследованияʺ. 2021. С. 59–63.

Reese S., Govindjee S. A theory of finite viscoelasticity and numerical aspects // International Journal of Solids and Structures. 1998. Vol. 35 (26/27). P. 3455–3482.

Amin A. F. M. S., Lion A., Sekita S., Okui Y. Nonlinear dependence of viscosity in modeling the rate-dependent response of natural and high damping rubbers in compression and shear: Experimental identification and numerical verification // International Journal of Plasticity. 2006. Vol. 22 (9). P. 1610–1657.

Petiteau J.-C., Verron E., Othman R., Sourne H., Sigrist J.-F., Barras G. Large strain ratedependent response of elastomers at different strain rates: Convolution integral vs. internal variable formulations // Mechanics of Time-Dependent Materials. 2013. Vol. 17(3). P. 349–367.

Кислицын В.Д., Мохирева К.А., Шадрин В.В., Свистков А.Л. Исследование и моделирование вязкоупругого поведения эла-стомерных нанокомпозитов // Вестник ПНИПУ. Механика. 2021. № 2. С. 76–87.

Reese S. A micromechanically motivated material model for the thermoviscoelastic material behaviour of rubber-like polymers // International Journal of Plasticity. 2003. Vol. 19(7). P. 909–940.

Linder. C., Tkachuk M., Miehe C. A micromechanically motivated diffusion-based transient network model and its incorporation into finite rubber viscoelasticity // Journal of the Mechanics and Physics of Solids. 2011. Vol. 59 (10). P. 2134–2156.

Кислицын В.Д., Свистков А.Л., Мохирева К.А., Шадрин В.В. Описание поведения вязкоупругих материалов в рамках новой термодинамической модели // Математическое моделирование в естественных науках: тезисы XXX всероссийской школы-конференции. 2021 [в печати].

Кислицын В.Д., Шадрин В.В., Осоргина И.В., Свистков А.Л. Анализ механических свойств полиуретановых материалов, изготовленных по растворной и литьевой технологиям // Вестник Пермского университета. Физика. 2020. № 1. С. 17–25.

Mokhireva K.A., Svistkov A.L. A new approach to describe the elastic behavior of filled rubber-like materials under complex uniaxial loading // International Journal of Plasticity. 2020. Vol. 202. P. 816–821.

Published

2021-12-22

How to Cite

Kislitsyn В. Д., & Mokhireva К. А. (2021). Description of the viscoelastic properties of low- and high-filled elastomeric nano-composites. BULLETIN OF PERM UNIVERSITY. MATHEMATICS. MECHANICS. COMPUTER SCIENCE, (4 (55), 19–24. https://doi.org/10.17072/1993-0550-2021-4-19-24