On solving the vehicle routing problem using a flu-id genetic algorithm
DOI:
https://doi.org/10.17072/1993-0550-2021-4-43-48Keywords:
fluid genetic algorithm, vehicle routing problemAbstract
The article describes an approach to solving the vehicle routing problem based on a fluid genetic algorithm. Fluid genetic algorithms differ from classical ones by a more flexible coding scheme for solutions, which is relevant for problems with a complex solution structure. The article presents a mathematical formulation of the problem. The authors proposed two variants of encoding individuals, as well as an algorithm for recalculating the probabilities that form a chromosome in a fluid genetic algorithm. The proposed approach is compared with other existing approaches. The conducted research suggests that the use of fluid genetic algorithms to solve the vehicle routing problem is possible. The obtained results are correct, however, the algorithm works too slowly on a big data, and the resulting solution turns out to be significantly worse than the solution obtained by the classical genetic algorithm. The article discusses possible solutions to the problems encountered.References
Сидоренко Д.О., Городилов А.Ю. Подвижный генетический алгоритм для решения задачи маршрутизации транспорта // материалы Всерос. науч.-практ. конф. молодых ученых с междунар. участием "Математика и междисциплинарные исследования". 2021. С. 177–180.
Гончарова Ю.А., Валеев Р.С., Валеева А.Ф. Задачи маршрутизации при транспортировке: обзор моделей, методов и алгоритмов // Логистика и управление цепями поставок. 2019. № 4. С. 74–88.
Prins C. A simple and effective evolutionary algorithm for the vehicle routing problem // Computers & Operations Research. 2004. №31. P. 1985–2002.
Jafari-Marandi R., Smith B. K. Fluid Genetic Algorithm (FGA) // Journal of Computational Design and Engineering. 2017. Vol. 4. P. 158–167.
Hong, Haoyuan & Panahi, Mahdi & Shirzadi, Ataollah & Ma, Tianwu & Liu, Junzhi & Zhu, A-Xing & Chen, Wei & Kougias, Ioannis & Kazakis, Nerantzis. (2018). Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Science of The Total Environment. 621. 1124–1141. 10.1016/j.scitotenv.2017.10.114.
Кротких А.А., Максимов П.В. Постановка обобщенного жидкостного генетического алгоритма и оценка его применимости в рамках решения задачи топологической оптимизации // Математика и междисциплинарные исследования – 2020: материалы Всерос. науч.-практ. конф. молодых ученых с междунар. участием (г. Пермь, 12–14 октября 2020 г.) / гл. ред. А.П. Шкарапута. Пермский государственный национальный исследовательский университет. Пермь, 2020.
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under license Creative Commons Attribution 4.0 International (CC BY 4.0).