Fictionalism, indispensability, cicadas: a fictionalist approach to the (in)dispensability of mathematics and the ontological status of abstract objects

Philosophy

Authors

  • Veronika V. Burian Lomonosov Moscow State University, 27/4, Lomonosovsky av., Moscow, 119991, Russia
  • George V. Cherkasov Lomonosov Moscow State University, 27/4, Lomonosovsky av., Moscow, 119991, Russia

DOI:

https://doi.org/10.17072/2078-7898/2023-3-404-413%20

Keywords:

fictionalism, Mark Balaguer, nominalism, Quine-Putnam argument of the indispensability of mathematics, abstract objects, Hartry Field, Alan Baker, holism, naturalism, principle of causal isolation

Abstract

The paper deals with fictionalism in the philosophy of mathematics, namely, the claim that we can use mathematical theories and, at the same time, believe that they are false because mathematical objects do not exist. Mathematical objects (numbers, sets, and functions) are non-spatiotemporal, nor mental platonic entities that are causally isolated from us. This raises two questions. The first is known as Benacerraf’s problem: how can we think of the truth of mathematical propositions? The second is the problem of applicability of mathematics. It becomes a problematic field for nominalists who refuse to rationally believe in the existence of such entities. Namely, if one believes that mathematical objects do not exist, why does mathematics-based empirical science work? As a response to this question, the well-known and widely discussed «indispensability argument» emerges, postulating ontological commitments to mathematical objects on the basis that they are indispensable to our best scientific theories. According to this argument, realists about science must also accept Platonism about mathematical entities. Hartry Field disproves this argument and demonstrates the dispensability of mathematics by proposing his «science without numbers». Field replaces the criterion of truth with the criterion of conservatism and argues that the applicability of mathematics should be explained by whether a particular theory is conservative or not. We then consider the «enhanced» indispensability argument (Baker) based on the explanatory role of mathematics. In the final section, we describe the «new» fictionalist account (Balaguer). The new fictionalist strategies allow us to accept the ontological thesis of nominalism without asserting the indispensability of mathematics. We agree that the explanatory power of mathematics is an argument in favor of the indispensable role of mathematical objects in the natural sciences. Nevertheless, the appeal to indispensability is misguided. We do not have to rationally believe in the existence of those entities that are indispensable to science. We can rather consider these entities as useful (in explanation) heuristic fictions and, at the same time, believe that they do not exist and that mathematical propositions are false.

Author Biographies

Veronika V. Burian , Lomonosov Moscow State University, 27/4, Lomonosovsky av., Moscow, 119991, Russia

Postgraduate Student of the Department of History of Foreign Philosophy

George V. Cherkasov , Lomonosov Moscow State University, 27/4, Lomonosovsky av., Moscow, 119991, Russia

Master’s Student of the Faculty of Philosophy

References

Хромченко А.С. Холизм и природа математических объектов // Вестник Томского государственного университета. Философия. Социология. Политология. 2020. № 55. С. 29–35. DOI: https://doi.org/10.17223/1998863X/55/4

Целищев В.В. Философия математики. Новосибирск: Наука, 2002. 212 с.

Baker A. Mathematical explanation in science // The British Journal for the Philosophy of Science. 2009. Vol. 60, no. 3. P. 611–633. DOI: https://doi.org/10.1093/bjps/axp025

Balaguer M. A fictionalist account of the indispensable applications of mathematics // Philosophical Studies. 1996. Vol. 83, iss. 3. P. 291–314. DOI: https://doi.org/10.1007/bf00364610

Benacerraf P. Mathematical truth // The Journal of Philosophy. 1973. Vol. 70, iss. 19. P. 661–679. DOI: https://doi.org/10.2307/2025075 Colyvan M. The Indispensability of Mathematics. N.Y.: Oxford University Press, 2001. 192 p. DOI: https://doi.org/10.1093/019513754x.001.0001

Cowling S. Abstract Entities. London, UK: Routledge, 2017. 292 p. DOI: https://doi.org/ 10.4324/9781315266619

Daly C., Langford S. Mathematical Explanation and Indispensability Arguments // The Philosophical Quarterly. 2009. Vol. 59, iss. 237. P. 641–658. DOI: https://doi.org/10.1111/j.1467-9213.2008.601.x

Field H. Science Without Numbers: The Defence of Nominalism. Princeton, NJ: Princeton University Press, 1980. 144 p.

Field H. Science Without Numbers: A Defense of Nominalism. 2nd ed. N.Y.: Oxford University Press, 2016. 180 p. DOI: https://doi.org/10.1093/acprof:oso/ 9780198777915.001.0001

Fraassen B.C. van. The Scientific Image. N.Y.: Oxford University Press, 1980. 248 p. DOI: https://doi.org/10.1093/0198244274.001.0001 Goodman N., Quine W.V. Steps Toward a Constructive Nominalism // The Journal of Symbolic Logic. 1947. Vol. 12, iss. 4. P. 105–122. DOI: https://doi.org/10.2307/2266485

Künne W. Abstrakte Gegenstande: Semantik und Ontologie. Frankfurt/M., DE: Suhrkamp, 1983. 342 S. Lewis D. On the Plurality of Worlds. Oxford, UK: Blackwell, 1986. 288 p.

Liggins D. Quine, Putnam, and the «Quine– Putnam» Indispensability Argument // Erkenntnis. 2008. Vol. 68, iss. 1. P. 113–127. DOI: https://doi.org/10.1007/s10670-007-9081-y

Pincock C. Mathematics and scientific representation. N.Y.: Oxford University Press, 2012. 348 p. DOI: https://doi.org/10.1093/acprof:oso/ 9780199757107.001.0001 Putnam H. Indispensability Arguments in the Philosophy of Mathematics // Philosophy in an Age of Science: Physics, Mathematics, and Skepticism / ed. by M. De Caro, D. Macarthur. Cambridge, MA: Harvard University Press, 2012. P. 181–201. DOI: https://doi.org/10.2307/j.ctv1nzfgrb.13

Putnam H. Mathematics, matter and method. 2nd. ed. Cambridge, UK: Cambridge University Press, 1979. 380 p. DOI: https://doi.org/10.1017/ cbo9780511625268

Putnam H. Philosophy of logic. N.Y.: Harper, 1971. 76 p. Resnik M. Scientific vs. mathematical realism: The indispensability argument // Philosophia Mathematica. 1995. Vol. 3, iss. 2. P. 166–174. DOI: https://doi.org/10.1093/philmat/3.2.166 Smith J.

Quine’s Intuition: Why Quine’s Early Nominalism is Naturalistic // Erkenntnis. 2020. Vol. 85, iss. 5. P. 1199–1218. DOI: https://doi.org/ 10.1007/s10670-018-0073-x

Quine W.V. From a Logical Point of View: Nine Logico-Philosophical Essays. 2nd ed., revised. Cambridge, MA: Harvard University Press, 1980. 210 p. DOI: https://doi.org/10.2307/j.ctv1c5cx5c

Quine W.V. Theories and Things. Cambridge, MA: Harvard University Press, 1981. 216 p. Quine W.V. Word and Object. Cambridge, MA: The MIT Press, 1960. 310 p.

References

Baker, A. (2009). Mathematical explanation in science. The British Journal for the Philosophy of Science. Vol. 60, no. 3, pp. 611–633. DOI: https://doi.org/10.1093/bjps/axp025

Balaguer, M. (1996). A fictionalist account of the indispensable applications of mathematics. Philosophical Studies. Vol. 83, iss. 3, pp. 291–314. DOI: https://doi.org/10.1007/bf00364610

Benacerraf, P. (1973). Mathematical truth. The Journal of Philosophy. Vol. 70, iss. 19, pp. 661–679. DOI: https://doi.org/10.2307/2025075 Colyvan, M. (2001). The Indispensability of mathematics. New York: Oxford University Press, 192 p. DOI: https://doi.org/ 10.1093/019513754x.001.0001

Cowling, S. (2017). Abstract entities. London, UK: Routledge Publ., 292 p. DOI: https://doi.org/ 10.4324/9781315266619

Daly, C. and Langford, S. (2009). Mathematical explanation and indispensability arguments. The Philosophical Quarterly. Vol. 59, iss. 237, pp. 641– 658. DOI: https://doi.org/10.1111/j.14679213.2008.601.x

Field, H. (1980). Science without numbers: a defense of nominalism. Princeton, NJ: Princeton University Press, 144 p.

Field, H. (2016). Science without numbers: a defense of nominalism. 2nd. ed. New York: Oxford University Press, 180 p. DOI: https://doi.org/10.1093/ acprof:oso/9780198777915.001.0001

Fraassen, B.C. van (1980). The scientific image. New York: Oxford University Press, 248 p. DOI: https://doi.org/10.1093/0198244274.001.0001

Goodman, N. and Quine, W.V. (1947). Steps toward a constructive nominalism. The Journal of Symbolic Logic. Vol. 12, iss. 4, pp. 105–22. DOI: https://doi.org/10.2307/2266485

Khromchenko, A.S. (2020). [Holism and the nature of mathematical objects]. Vestnik Tomskogo gosudarstvennogo universiteta. Filosofiya. Sotsiologiya. Politologiya [Tomsk State University Journal of Philosophy, Sociology and Political Science]. DOI: https://doi.org/10.17223/1998863X/55/4

Künne, W. (1983). Abstrakte Gegenstande: Semantik und Ontologie [Abstract objects: semantics and ontology]. Frankfurt am Main, DE: Suhrkamp Publ., 342 p.

Lewis, D. (1986). On the plurality of worlds. Oxford, UK: Blackwell Publ., 288 p.

Liggins, D. (2008). Quine, Putnam, and the «Quine–Putnam» indispensability argument. Erkenntnis. Vol. 68, iss. 1, pp. 113–127. DOI: https://doi.org/10.1007/s10670-007-9081-y

Pincock, C. (2012). Mathematics and scientific representation. New York: Oxford University Press, 348 p. DOI: https://doi.org/10.1093/acprof:oso/ 9780199757107.001.0001

Putnam, H. (1971). Philosophy of logic. New York: Harper Publ., 76 p.

Putnam, H. (1979). Mathematics, matter and method. 2nd. ed. Cambridge, UK: Cambridge University Press, 380 p. DOI: https://doi.org/ 10.1017/cbo9780511625268

Putnam, H. (2012). Indispensability arguments in the philosophy of mathematics. M. De Caro, D. Macarthur (eds.) Philosophy in an age of science: Physics, mathematics, and skepticism. Cambridge, MA: Harvard University Press, pp. 181–201. DOI: https://doi.org/10.2307/j.ctv1nzfgrb.13

Resnik, M. (1995). Scientific vs. mathematical realism: The indispensability argument. Philosophia Mathematica. Vol. 3, iss. 2, pp. 166–174. DOI: https://doi.org/10.1093/philmat/3.2.166

Smith, J. (2020). Quine’s intuition: Why Quine’s early nominalism is naturalistic. Erkenntnis. Vol. 85, iss. 5, pp. 1199–1218. DOI: https://doi.org/ 10.1007/s10670-018-0073-x

Quine, W.V. (1960). Word and object. Cambridge, MA: The MIT Press, 310 p.

Quine, W.V. (1980). From a logical point of view: nine logico-philosophical essays. 2nd ed., revised. Cambridge, MA: Harvard University Press, 210 p. DOI: https://doi.org/10.2307/j.ctv1c5cx5c

Quine, W.V. (1981). Theories and things. Cambridge, MA: Harvard University Press, 216 p. Tselishchev, V.V. (2002). Filosofiya matematiki [Philosophy of mathematics]. Novosibirsk: Nauka Publ., 212 p.

Published

2023-10-23

Issue

Section

Статьи