DEVELOPMENT OF REMOTE SENSING METHODS FOR NATURAL FIRE PREVENTION

Authors

DOI:

https://doi.org/10.17072/2079-7877-2021-1-149-161

Keywords:

fire prevention, fire danger, remote sensing data, geoinformation methods, fire simulation models, neural networks

Abstract

The study deals with remote sensing methods for natural fire prevention, provides analysis and systematization on the subject. It traces the historical development and demonstrates the diversity of the methods. The main development stages and their characteristics were identified taking into account the increasing number of the sources and types of remote sensing and deepening knowledge of the subject. Fire interpretation includes fundamentally different processes of ignition and fire spread. The concepts of fire danger and its factors were introduced, the ways for their selection and application in the methods were analyzed. The source data for the methods were defined: satellite imagery of various resolutions (Landsat, Sentinel, MODIS/Terra-Aqua, AVHRR/NOAA, etc.), UAV images, lidar data, as well as technologies to process those. The study demonstrates that the most commonly used are traditional methods of geoinformation analysis, simulation modelling and neural networks. The methods were described, features of their implementation were identified. The description includes specific examples of fire danger assessment methods based on GIS, simulation models of fire spread, fire prevention methods based on neural networks and their application for territories of different spatial levels – global, regional and local.

References

Гизатуллин А.Т., Алексеенко Н.А., Моисеева Н.А. Разработка алгоритма превентивной оценки пожарной опасности природных территорий по данным дистанционного зондирования // Геодезия и картография. 2019. Т. 80. № 1. С. 102–109.

Пожары и пожарная безопасность в 2018 году: статистический сборник / под общей ред. Д.М. Гордиенко. М.: ВНИИПО, 2019. 125 с.

Хвостиков С.А. Региональная оптимизация параметров прогнозной модели природных пожаров и оперативное моделирование динамики их развития с использованием данных спутниковых наблюдений // Современные проблемы дистанционного зондирования Земли из космоса. 2012. Т. 9. № 3. С. 91–100.

Amatulli G., Perez-Cabello F., de la Riva J. Mapping lightning/human-caused wildfires occurrence under ignition point location uncertainty // Ecological Modelling. 2007. T. 200. № 3-4. P. 321–333.

Ambrosia V.G., Brass J.A. Thermal analysis of wildfire effects on global ecosystem cycling // Geocarto International. 1988. T. 3. № 4. P. 29–40.

Bourgeau-Chavez L.L., Kasischke E.S., Rutherford M.D. Evaluation of ERS SAR data for prediction of fire danger in a boreal region // International Journal of Wildland Fire. 1999. T. 9. № 3. P. 183–194.

Bradshaw L.S., Deeming J.E., Burgan R.E., Cohen, J.D. The 1978 National Fire-Danger Rating System: technical documentation. General Technical Report INT-169. Ogden: U.S. Department of Agriculture, Forest Service, 1984. 44 p.

Brushlinsky N.N., Ahrens M., Sokolov S.V., Wagner P. World Fire Statistics // Center of Fire Statistics: International Association of fire and rescue services. 2016. № 21. 62 p.

Calle A., Salvador P. The active fire FRP product: study on Sentinel-3/SLSTR // IEEE Geoscience and Remote Sensing Letters. 2013. T. 10. № 5. P. 1046–1049.

Carmel Y., Paz S., Jahashan F., Shoshany M. Assessing fire risk using Monte Carlo simulations of fire spread // Forest Ecology and Management. 2009. T. 257. № 1. P. 370–377.

Coen J.L., Schroeder W. Use of spatially refined satellite remote sensing fire detection to initialize and evaluate coupled weather-wildfire growth model simulations // Geophysical Research Letters. 2013. T. 40. P. 5536–5541.

Csiszar [et al.] Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results // Journal of Geophysical Results: Atmospheres. 2013. T. 119. № 2. P. 803–816.

Dasgupta S., Qu J.J, Hao X.J. Design of a susceptibility index for fire risk monitoring // IEEE Geoscience and Remote Sensing Letters. 2006. T. 3. № 1. P. 140–144.

Giglio L., Descloitres J., Justice C. O., Kaufman Y.J. An enhanced contextual fire detection algorithm for MODIS // Remote Sensing of Environment. 2003. T. 87. № 2-3. P. 273–282.

Hernandez-Leal P.A., Arbelo M., Gonzalez-Calvo A. Fire Risk assessment using satellite data // Advances in Space Research. 2006. T. 37. № 4. P. 741–746.

Hirsch S.N., Kruckeberg R.F., Madden F.H. The bi-spectral forest detection system // Proceeding 7th International Symposium. on Remote Sensing of Environment. ERIM. Ann Arbor. MI. 1971. P. 2253–2259.

Kanga S., Singh K. Forest Fire Simulation Modeling using Remote Sensing & GIS // International Journal of Advanced Research in Computer Science. 2017. T. 8. № 5. P. 326–332.

Levick S.R., Shendryk Y., Setterfield S.A., Rossiter-Rachor N.A. Evaluation of satellite remote sensing pathways for mapping and monitoring of gamba grass for the Savanna Fire Management Methodology. Darwin, 2018. 20 p.

Lopez A.S., San-Miguel-Ayanz J., Burgan R. Integration of satellite sensor data, fuel type maps and meteorological observations for evaluations of forest fire risk at the pan-European scale // International Journal of Remote Sensing. 2002. T. 23. № 13. P. 2713–2719.

Maeda E.E. [et al.]. Forest fire risk mapping in the Brazilian Amazon using MODIS images and artificial neural networks // International Journal of Applied Earth Observation and Geoinformation. 2009. T. 11. №4. P. 265–272.

Marchi E. [et al.]. Forest fire prevention: a GIS tool for fire-fighting planning and management // Proceedings of the 6th international workshop of the EARSeL special interest group on forest fires. Thesalonniki, 2007. P. 102–106.

Mbow C., Goita K., Benie B. Spectral indices and fire behavior simulation for fire risk assessment in savanna ecosystem // Remote Sensing of Environment. 2004. T. 91. № 1. P. 1–13.

Navarro G. [et al.]. Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery // International Journal of Applied Earth Observation and Geoinformation. 2017. T. 58. P. 97–106.

Peterson D.A. [et al.]. Implications for predicting extreme fire spread, pyroconvection and smoke emissions // Bulletin of the American Meteorological Society. 2015. T. 96. № 2. P. 229–247.

Rabii H.A. An Investigation of the utility of Landsat-2 MSS data to the fire-danger rating area, and forest fuel analysis within Crater Lake National Park: Ph.D. thesis. Oregon, 1979. 410 p.

Rao G.N., Rao P.J., Duvvuru R.A. Drone Remote Sensing for Virtual Reality Simulation System for Forest Fires: Semantic Neural Network Approach // IOP Conf. Series: Materials Science and Engineering. 2016. № 149. P. 1–7.

Rignot E. [et al.]. Monitoring of environmental conditions in taiga forests using ERS-1 SAR // Remote Sensing of the Environment. 1994. T. 49. № 2. P. 145–154.

Rollins M.G., Keane R.E., Parsons R.A. Mapping fuels and fire regimes using remote sensing, ecosystem simulation and gradient modeling // Ecological Applications. 2004. T. 14. № 1. P. 75–95.

Stergiopoulos I., Mallinis G., Gitas I.Z. Fuel type mapping using medium resolution imagery and GIS, considering radiometric, spatial and spectral enhancements of the original dataset // Proceedings of the 6th international workshop of the EARSeL special interest group on forest fires. Thesalonniki, 2007. P. 107-110.

Van Wagner C.E. Development and Structure of the Canadian Forest Fire Weather Index System // Forestry Technical Report. Canada Forest Service. 1987. 37 p.

Vasconcelos M.J.P. [et al.]. Spatial Prediction of Fire Ignition Probabilities: Comparing Logistic Regression and Neural Networks // Photogrammetric Engineering & Remote Sensing. 2001. T. 67. № 1. P. 73–81.

Verbesselt J. [et al.]. Monitoring herbaceous fuel moisture content with SPOT VEGETATION time-series for fire risk prediction in savanna ecosystems // Remote Sensing of Environment. 2007. T. 108. №4. P. 357–368.

Yaloveha V., Hlavcheva D., Podorozhniak A., Kuchuk H. Fire Hazard Research of Forest Areas based on the use of Convolutional and Capsule Neural Networks // IEEE 2nd Ukraine Conference on Electrical and Computer Engineering. Lviv, 2019. P. 828–832.

Yool S.R., Eckhardt D.W., Estes J.E., Cosentino J. Describing the brushfire hazard in Southern California // Annals of the American Association of Geographers. 1985. T. 75. № 3. P. 417–430.

Yu B., Chen F., Li B., Wang L. Fire Risk Prediction Using Remote Sensed Products: A Case of Cambodia // Photogrammetric Engineering & Remote Sensing. 2017. T. 83. № 1. P. 19–25.

Yunhao C., Jing L., Guangxiong P. Forest fire risk assessment combinig remote sensing and meteorological information // New Zealand Journal of Agricultural Research. 2007. T. 50. № 5. P. 1037–1044.

Zhu Q., Rong T., Sun R. A case study on fractal simulation of forest fire spread // Science in China. 2000. T. 43. P. 104–113.

Published

2021-09-30

How to Cite

Gizatullin А. Т. (2021). DEVELOPMENT OF REMOTE SENSING METHODS FOR NATURAL FIRE PREVENTION. Geographical Bulletin, (1(56), 149–161. https://doi.org/10.17072/2079-7877-2021-1-149-161

Issue

Section

Cartogrphy and Geoinformatics