Influence of slurry storage facility with salt-bearing wastes on the surface and ground waters

Authors

  • Елена Александровна Хайрулина Естественнонаучный институт Пермского государственного национального исследовательского университета http://orcid.org/0000-0002-9074-8551

Keywords:

slurry storage, water-soluble salts, sodium chloride water, ion exchange, leaching

Abstract

Operation of the existing slurry storage facilities with salt-bearing wastes could lead to a change of the soil properties in the bed of embankment dams and slurry ponds used to prevent infiltration. As a result of the barrier properties deterioration, filtration waters are formed, which determines the transformation of the chemical composition of surface water and groundwater. The hydrochemical analysis of drainages, surface and ground water, and chemical analysis of slurry material were carried out on the territory of the Verhnekamskoe Potash Deposit (Perm Krai, Russia). Our study shows that the drainage water of Na-Cl type with high contents of nitrogen compounds pollutes both groundwater and surface water. The pollution of Quaternary and Speckled strata groundwater with different degrees of the chemical composition transformation has been revealed. The role of ion exchange and leaching processes in ground and surface waters has been determined. It has been found that with a high level of chloride-sodium contamination, the content of Ca2+, Mg2+, SO42-, and Fetotal  increases.doi 10.17072/2079-7877-2018-2-145-155

Author Biography

Елена Александровна Хайрулина, Естественнонаучный институт Пермского государственного национального исследовательского университета

кандидат географических наук, ведущий научный сотрудник

References

Базилевич Н.И., Панкова Е.И. Методические указания по учету засоленных почв. М., 1968. 89 с.

Бачурин Б.А., Сметанников А.Я., Хохрякова Е.С. Эколого-геохимичеcкая оценка продуктов переработки глинисто-солевых шламов калийного производства // Современные проблемы науки и образования. 2014. №6. URL: http://www.science-education.ru/ru/article/view?id=15442 (дата обращения: 20.09.2017).

Бачурин Б.А., Бабошко А.Ю. Эколого-геохимическая характеристика отходов калийного производства // Горный журнал. 2008. №10. С. 88 – 91.

Бельтюков Г.В. Основные источники загрязнения подземных и поверхностных вод на территории Верхнекамского месторождения калийных солей // Вестник Пермского университета. Экология. 1996. Вып. 4. C 128–140.

Вострецов С.П., Каменчук А.П., Полошкин С.Н., Попов В.М. Способ создания противофильтрационного экрана с геомембраной из полимерного материала. Патент на изобретение RUS 2374386 14.07.2008.

ГН 2.1.5.1315-03. Гигиенические нормативы. Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования.

Дашко Р.Э., Крыcов О.Ю. Мольский Е.В., Петров Н.С. Изучение противофильтрационных экранов шламохранилищ жидких отходов калийных производств // Охрана окружающей среды калийных производств: тр. ВНИИГ. Л., 1985. С. 73 ‒83.

Колпашников Г.А., Клементьев В.П., Еременко Ю.П. Процессы засоления пород и подземных вод твердыми отходами калийных производств Солигорских комбинатов // Докл. АН БССР. 1979. Т.14. № 5. С. 443–446.

Колпашников Г.А., Аль-Tамими С.С.Х., Аль-Хаснави Р.М.А.Х., Крошнер И.П. Влияние влажности и солей на прочностные и деформационные свойства дисперсных грунтов // Наука и техника. 2010. №2. С. 5–7.

Максимович Н.Г., Горбунова К.А. Изменение гидрогеологических условий в процессе строительства крупного агропромышленного комплекса // Инженерная геология. 1989. №5. С. 61–65.

Монюшко А.М., Пахомов С.П. Основные закономерности, определяющие устойчивость глинистых грунтов к воздействию обводнения и промстоков (по экспериментальным данным) // Инженерная геология. 1985. №6. С. 35–45.

Слюсарь Н.Н., Загорская Ю.М., Шлее Ю. Современные подходы к рекультивации свалок и полигонов захоронения твердых бытовых отходов // Вестник ПНИПУ. Урбанистика. 2012. №4. С. 84–91.

Харитонов Т.В. и др. Создание сводных геологической и гидрологической карт Верхнекамского месторождения калийных солей масштаба 1:100000. Пермь-геокарта. Пермь,1999.

Хайрулина Е.А. Формирование экологической обстановки при разработке месторождения калийных солей // Проблемы региональной экологии. 2015. №4. С. 140 – 145.

Arle J., Wagner F. Effect of anthropogenic salinisation on the ecological status of macroinvertebrate assemblages in the Werra River (Thuringia, Germany) // Hydrobiologia. 2013. № 701. P. 129–148.

Barbour S.L., Yang N.A. A review of the influence of clay-brine interactions on the geothechnical properties of Ca-montmorillonitic clayey soils from western Canada // Canadian Geotechnical Journal. 1993. №30(6). P. 920–934.

Baure M., Eichinger L., Elsass P., Kloppmann W., Wirsing G. Isotopic and hydrochemical studies of groundwater flow and salinity in the Southern Rhine Graden // Int J Earth Sci. 2005. №94. P. 565 579

Environmental Aspects of Phosphate and Potash Mining. First edition, Paris: United Nations Publication, 2001. 62 p.

Fetisova N.F., Fetisov V.V., Maio M.De., Zekster I.S. Groundwater vulnerability assessment based on calculation of chloride travel time through the unsaturated zone on the area of the Upper Kama potassium salt deposit // Environ Earth Sci. 2016. №75 P. 681. DOI: 10.1007/s12665-016-5496-6

Khayrulina E. Aspects of the environmental monitoring on the territory of Verhnekamskoye Potash Deposit (Russia) // Mining Meets Water – Conflicts and Solutions. Proceedings IMWA2016 Annual Conference, Leipzig, Germany. 2016. P. 378 – 382. URL:

https://www.imwa.info/docs/imwa_ 2016/IMWA2016_Proceedings.pdf (дата обращения: 20.09.2012).

Khayrulina E., Maksimovich N. Influence of drainage with high contents of water-soluble salts on the environment in the Verhnekamskoe potash deposit, Russia // Mine Water Environ. 2018. DOI: 10.1007/s10230-017-0509-6.

Liu Y., Lekhov A.V. Modeling changes in permeability characteristics of gypsified rocks accompanying brine flow// Water Resources. 2013. №40(7). P. 776–782. DOI: 10.1134/S0097807813070063

Lyubimova T.P., Lepikhin A.P., Parshakova Ya.N., Tsiberkin K.B. Numerical modeling of liquid-waste infiltration from storage facilities into surrounding groundwater and surface-water bodies // Journal of applied mechanics and technical physics. 2016. №57(7) P. 1208–1216. DOI:10.1134/S0021894416070099

Lucas Y., Schmitt A.D., Chabaux F., Clément A., Fritz B., Elsass Ph., Durand S. Geochemical tracing and hydrogeochemical modelling of water–rock interactions during salinization of alluvial groundwater (Upper Rhine Valley, France) // Applied Geochemistry. 2010. №25(11). P. 1644–1663.

Luo J., Diersch H.-J., Monninkhoff L. 3D modeling of saline groundwater flow and transport in a flooded salt mine in Stassfurt, Germany // Mine water Environ. 2012. №31 P. 104–111. DOI: 10.1007/s10230-012-0181-9.

Osipov V.I. Density of clay minerals // Soil mechanics and foundation engineering. 2012. №48(6). P. 231 – 240. DOI: 10.1007/s11204-012-9153-0.

Rauche A.M., Fulda D., Schwalm V. Tailings and Disposal Brine Reduction – Design Criteria for Potash Production in the 21st Century // Tailings and mine waste 8th International conference. 2001. Р. 85 –94.

Published

2018-07-10

How to Cite

Хайрулина, Е. А. (2018). Influence of slurry storage facility with salt-bearing wastes on the surface and ground waters. Geographical Bulletin, (2), 145–155. Retrieved from http://press.psu.ru/index.php/geogr/article/view/1486

Issue

Section

Ecology and Environmental management

Most read articles by the same author(s)