Межмикробные взаимодействия в бактериально-грибковых ассоциациях
##plugins.themes.bootstrap3.article.main##
Аннотация
##plugins.themes.bootstrap3.article.details##
Лицензионный договор на право использования научного произведения в научных журналах, учредителем которых является Пермский государственный национальный исследовательский университет
Текст Договора размещен на сайте Пермского государственного национального исследовательского университета http://www.psu.ru/, а также его можно получить по электронной почте в «Отделе научных периодических и продолжающихся изданий ПГНИУ»: YakshnaN@psu.ru или в редакциях научных журналов ПГНИУ.
Библиографические ссылки
Алыбаева А.Ж., Олейникова Е.А., Елубаева М.Е. Межмикробные взаимодействия в бактериально-грибковых ассоциациях условно-патогенных микроорганизмов // Вестник Науки и Творчества. 2020. № 7(55). С. 19‒25.
Шаталова Е.В., Парахина О.В., Летова Ю.С. Персистентный потенциал значимых возбудителей нозокомиальных инфекций в условиях ассоциации с грибами рода Candida // Проблемы медицинской микологии. 2019. № 3. С. 46‒48.
Abdulkareem A.F. et al. Fungal serotype-specific differences in bacterial-yeast interactions // Virulence. 2015. Vol. 6(6). P. 652‒657.
Abisado R.G. et al. Bacterial quorum sensing and microbial community interactions // mBio. 2018. Vol. 9(3). Art. e02331-17.
Ashrit P. et al. Polymicrobial biofilm dynamics of multidrug-resistant Candida albicans and ampicillin-resistant Escherichia coli and antimicrobial inhibition by aqueous garlic extract // Antibiotics. 2022. Vol. 11. Art. 573.
Baldewijns S. et al. The role of fatty acid metabolites in vaginal health and disease: Application to candid-iasis // Front. Microbiol. 2021. Vol. 12. Art. 705779.
Balhara M. et al. An anti-Aspergillus protein from Escherichia coli DH5α: utative inhibitor of siderophore biosynthesis in Aspergillus fumigatus // Mycoses. 2014. Vol. 57(3). P. 153‒162.
Belvoncikova P. et al. The human mycobiome: Colonization, composition and the role in health and dis-eas // J. Fungi. 2022. Vol. 8. Art. 1046.
Bose S. et al. Escherichia coli, but not Staphylococcus aureus, functions as a chelating agent that exhibits antifungal activity against the pathogenic yeast Candida albicans // J. Fungi. 2023. Vol. 9(3). Art. 286.
Boutin R.C. et al. Bacterial-fungal interactions in the neonatal gut influence asthma outcomes later in life // Elife. 2021. Vol. 10. Art. e67740.
Bratburd J.R. et al. Gut microbial and metabolic responses to Salmonella enterica serovar typhimurium and Candida albicans // mBio. 2018. Vol. 9(6). Art. e02032-18.
Briard B., Heddergott C., Latgé J.P. Volatile compounds emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus // mBio. 2016. Vol. 7(2). Art. e00219.
d'Enfert C. et al. The impact of the fungus-host-microbiota interplay upon Candida albicans infections: Current knowledge and new perspectives // FEMS Microbiol. Rev. 2021. Vol. 45(3). Art. fuaa060.
Fox E.P. et al. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures // Curr. Biol. 2014. Vol. 24(20). P. 2411‒2416.
Hattab S., Dagher A.M., Wheeler R.T. Pseudomonas synergizes with fluconazole against Candida during treatment of polymicrobial infection // Infect Immun. 2022. Vol. 90(4). Art. e0062621.
He J. et al. RNA-seq reveals enhanced sugar metabolism in Streptococcus mutans co-cultured with Can-dida albicans within mixed-species biofilms // Front. Microbiol. 2017. Vol. 8. Art. 1036.
Heisel T. et al. Bacterial, fungal, and interkingdom microbiome features of exclusively breastfeeding dy-ads are associated with infant age, antibiotic exposure, and birth mode // Front. Microbiol. 2022. Vol. 13. Art. 1050574.
Hu Y. et al. Staphylococcus aureus synergized with Candida albicans to increase the pathogenesis and drug resistance in cutaneous abscess and peritonitis murine models // Pathogens. 2021. Vol. 10. Art. 1036.
Ikeda R. Apoptosis-like cell death of Cryptococcus neoformans mediated by Staphylococcus aureus contact. Med. Mycol. J. Vol. 54(1) (2013): pp. 49-52.
Ikeda R. et al. Contribution of the mannan backbone of cryptococcal glucuronoxylomannan and a gly-colytic enzyme of Staphylococcus aureus to contact-mediated killing of Cryptococcus neoformans // J. Bacteri-ol. 2007. Vol. 189(13). P. 4815‒4826.
Kapitan M. et al. Fungi as part of the microbiota and interactions with intestinal bacteria // Curr. Top. Microbiol. Immunol. 2019. Vol. 422. P. 265‒301.
Kim J.Y. Human fungal pathogens: Why should we learn? // J. Microbiol. 2016 Vol. 54(3). P. 145‒148.
Köhler J.R. et al. Fungi that infect humans // Microbiol. Spectr. 2017. Vol. 5(3). 10.1128/microbiolspec.funk-0014-2016.
Krishnamoorthy A.L. et al. Interactions between Candida albicans and Enterococcus faecalis in an or-ganotypic oral epithelial model // Microorganisms. 2020. Vol. 8. Art. 1771.
Krüger W. et al. Fungal-bacterial interactions in health and disease // Pathogens. 2019. Vol. 8(2). Art. 70.
Kumari A., Singh R. Medically important interactions of staphylococci with pathogenic fungi // Future Microbiol. 2019. Vol. 14. P. 1159–1170.
Lai G.C., Tan T.G., Pavelka N. The mammalian mycobiome: A complex system in a dynamic relation-ship with the host // Wiley Interdiscip. Rev. Syst. Biol. Med. 2019. Vol. 11(1). Art. e1438.
Little W., Black C., Smith A.C. Clinical implications of polymicrobial synergism effects on antimicrobial susceptibility // Pathogens. 2021. Vol. 10(2). Art. 144.
Lueyar T.K. et al. Dynamic interactions between Candida albicans and different streptococcal species in a multispecies oral biofilm // Microbiologyopen. 2023. Vol. 12(5). Art. e1381.
Maas E., Penders J., Venema K. Studying fungal-bacterial relationships in the human gut using an in vitro model (TIM-2) // J. Fungi. 2023 Vol. 9. Art. 174.
Martins-Santana L. et al. Addressing microbial resistance worldwide: Challenges over controlling life-threatening fungal infections // Pathogens. 2023. Vol. 12. Art. 293.
Mayer F.L., Kronstad J.W. Disarming Fungal pathogens: Bacillus safensis inhibits virulence factor pro-duction and biofilm formation by Cryptococcus neoformans and Candida albicans // mBio. 2017. Vol. 8(5). Art. e01537-17.
Mayer F.L., Kronstad J.W. The spectrum of interactions between Cryptococcus neoformans and bacteria // J. Fungi. 2019. Vol. 5(2). Art. 31.
Metwalli K.H. et al. Streptococcus mutans, Candida albicans, and the human mouth: a sticky situation // PLoS Pathog. 2013. Vol. 9(10). Art. e1003616.
Mishra K., Bukavina L., Ghannoum M. Symbiosis and dysbiosis of the human mycobiome // Front. Mi-crobiol. 2021. Vol. 12. Art. 636131.
Mogavero S. et al. Enemies and brothers in arms: Candida albicans and gram-positive bacteria // Cell Microbiol. 2016. Vol. 18(12). P. 1709–1715.
Nogueira F. et al. Pathogenetic impact of bacterial-fungal interactions // Microorganisms. 2019. Vol. 7(10). Art. 459.
Oliveira M. et al. Clinical manifestations of human exposure to fungi // J. Fungi. 2023. Vol. 9(3). Art. 381.
Palmieri F. et al. Recent advances in fungal infections: From lung ecology to therapeutic strategies with a focus on Aspergillus spp. // Front. Med. 2022. Vol. 9. Art. 832510.
Parolin C. et al. Lactobacillus biofilms influence anti-Candida activity // Front. Microbiol. 2021. Vol. 12. Art. 750368.
Pohl C.H. Competition for iron during polymicrobial infections may Increase antifungal drug susceptibil-ity-Hhw will it impact treatment options? // Infect. Immun. 2022. Vol. 90(4). Art. e0005722.
Rodrigues M.E., Gomes F., Rodrigues C.F. Candida spp. Bacteria mixed biofilms // J. Fungi. 2020. Vol. 6(1). Art. 5.
Sam Q.H., Chang M.W., Chai L.Y. The fungal mycobiome and its interaction with gut bacteria in the host // Int. J. Mol. Sci. 2017. Vol. 18(2). Art. 330.
Santus W., Devlin J.R., Behnsen J. Crossing kingdoms: How the mycobiota and fungal-bacterial interac-tions impact host health and disease // Infect Immun. 2021. Vol. 89(4). Art. e00648-20.
Sharma A. et al. Associations between fungal and bacterial microbiota of airways and asthma endo-types// J. Allergy Clin. Immunol. 2019. Vol. 144(5). P. 1214–1227. Art. e7.
Sztukowska M.N. et al. Community development between Porphyromonas gingivalis and Candida al-bicans mediated by InlJ and Als3 // mBio. 2018. Vol. 9(2). Art. e00202-18.
Tan X. et al. Candida albicans airway colonization facilitates subsequent Acinetobacter baumannii pneumonia in a rat model // Antimicrob. Agents Chemother. 2016. Vol. 60(6). P. 3348–3354.
Todd O.A., Peters B.M. Candida albicans and Staphylococcus aureus pathogenicity and polymicrobial interactions: Lessons beyond Koch’s postulates // J. Fungi. 2019. Vol. 5. Art. 81.
van Leeuwen P.T. et al. Interspecies interactions between Clostridium difficile and Candida albicans // mSphere. 2016. Vol. 1(6). Art. e00187-16.
Wang F. et al. Interactions between invasive fungi and symbiotic bacteria // World J. Microbiol. Biotech-nol. 2020. Vol. 36(9). Art. 137.
Ward T.L. et al. Development of the human mycobiome over the first month of life and across body sites // mSystems. 2018. Vol. 3(3). Art. e00140-17.