Intermicrobial interactions in bacterial-fungal associations

Main Article Content

Marina V. Nikolenko
Darya S. Sivkova
Natalya V. Baryshnikova
Lidiya V. Sorogina

Abstract

One of the factors contributing to the increase in the incidence of mycoses is the formation of intermicrobial associations with opportunistic microbiota. Changing the balance in such communities may cause the emergence of other associated diseases. The influence of microorganisms on each other occurs through signaling molecules and exometabolites. Complex bacterial and fungal associations of pathogens of purulent-inflammatory infections are more difficult to respond to antimicrobial therapy and lead to a more severe clinical course or death. This review examines the features of bacterial-fungal interactions of Candida sрp., Aspergillus spp., Cryptococcus spр. According to literature, the decisive role in the virulent activity of fungi in bacterial-fungal associations is played by the species composition of associates involved in the development of the pathological process. In addition, it is necessary to take into account the quantitative ratio of microorganisms, as well as the degree of virulence of fungi, which increases significantly under the influence of metabolites of associated bacteria. Therefore, further study of fungal-bacterial associations is necessary to understand fundamental issues related to the evolution of microbial virulence and antimicrobial resistance. The interactions in the studied bacterial-fungal associations are very dynamic and diverse. The nature of the relationships between microorganisms affects not only survival, but also the virulence of each other.

Article Details

How to Cite
Nikolenko М. В. ., Sivkova Д. С. ., Baryshnikova Н. В., & Sorogina Л. В. . (2024). Intermicrobial interactions in bacterial-fungal associations. Bulletin of Perm University. Biology, (3), 300‒308. https://doi.org/10.17072/1994-9952-2024-3-300-308
Section
Микробиология
Author Biographies

Marina V. Nikolenko, Tyumen State Medical University, Tyumen, Russia

doctor of biology, associate professor, professor of the Department of microbiology, Head of the Laboratory of microbiome, regenerative medicine and cell technologies

Darya S. Sivkova, Tyumen State Medical University, Tyumen, Russia

assistant at the Department of microbiology, junior researcher at the Laboratory of microbiome, regenerative medicine and cell technologies

Natalya V. Baryshnikova, Tyumen State Medical University, Tyumen, Russia

senior lecturer at the Department of microbiology

Lidiya V. Sorogina, Tyumen State Medical University, Tyumen, Russia

4th year student of the Institute of Clinical Medicine

References

Алыбаева А.Ж., Олейникова Е.А., Елубаева М.Е. Межмикробные взаимодействия в бактериально-грибковых ассоциациях условно-патогенных микроорганизмов // Вестник Науки и Творчества. 2020. № 7(55). С. 19‒25.

Шаталова Е.В., Парахина О.В., Летова Ю.С. Персистентный потенциал значимых возбудителей нозокомиальных инфекций в условиях ассоциации с грибами рода Candida // Проблемы медицинской микологии. 2019. № 3. С. 46‒48.

Abdulkareem A.F. et al. Fungal serotype-specific differences in bacterial-yeast interactions // Virulence. 2015. Vol. 6(6). P. 652‒657.

Abisado R.G. et al. Bacterial quorum sensing and microbial community interactions // mBio. 2018. Vol. 9(3). Art. e02331-17.

Ashrit P. et al. Polymicrobial biofilm dynamics of multidrug-resistant Candida albicans and ampicillin-resistant Escherichia coli and antimicrobial inhibition by aqueous garlic extract // Antibiotics. 2022. Vol. 11. Art. 573.

Baldewijns S. et al. The role of fatty acid metabolites in vaginal health and disease: Application to candid-iasis // Front. Microbiol. 2021. Vol. 12. Art. 705779.

Balhara M. et al. An anti-Aspergillus protein from Escherichia coli DH5α: utative inhibitor of siderophore biosynthesis in Aspergillus fumigatus // Mycoses. 2014. Vol. 57(3). P. 153‒162.

Belvoncikova P. et al. The human mycobiome: Colonization, composition and the role in health and dis-eas // J. Fungi. 2022. Vol. 8. Art. 1046.

Bose S. et al. Escherichia coli, but not Staphylococcus aureus, functions as a chelating agent that exhibits antifungal activity against the pathogenic yeast Candida albicans // J. Fungi. 2023. Vol. 9(3). Art. 286.

Boutin R.C. et al. Bacterial-fungal interactions in the neonatal gut influence asthma outcomes later in life // Elife. 2021. Vol. 10. Art. e67740.

Bratburd J.R. et al. Gut microbial and metabolic responses to Salmonella enterica serovar typhimurium and Candida albicans // mBio. 2018. Vol. 9(6). Art. e02032-18.

Briard B., Heddergott C., Latgé J.P. Volatile compounds emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus // mBio. 2016. Vol. 7(2). Art. e00219.

d'Enfert C. et al. The impact of the fungus-host-microbiota interplay upon Candida albicans infections: Current knowledge and new perspectives // FEMS Microbiol. Rev. 2021. Vol. 45(3). Art. fuaa060.

Fox E.P. et al. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures // Curr. Biol. 2014. Vol. 24(20). P. 2411‒2416.

Hattab S., Dagher A.M., Wheeler R.T. Pseudomonas synergizes with fluconazole against Candida during treatment of polymicrobial infection // Infect Immun. 2022. Vol. 90(4). Art. e0062621.

He J. et al. RNA-seq reveals enhanced sugar metabolism in Streptococcus mutans co-cultured with Can-dida albicans within mixed-species biofilms // Front. Microbiol. 2017. Vol. 8. Art. 1036.

Heisel T. et al. Bacterial, fungal, and interkingdom microbiome features of exclusively breastfeeding dy-ads are associated with infant age, antibiotic exposure, and birth mode // Front. Microbiol. 2022. Vol. 13. Art. 1050574.

Hu Y. et al. Staphylococcus aureus synergized with Candida albicans to increase the pathogenesis and drug resistance in cutaneous abscess and peritonitis murine models // Pathogens. 2021. Vol. 10. Art. 1036.

Ikeda R. Apoptosis-like cell death of Cryptococcus neoformans mediated by Staphylococcus aureus contact. Med. Mycol. J. Vol. 54(1) (2013): pp. 49-52.

Ikeda R. et al. Contribution of the mannan backbone of cryptococcal glucuronoxylomannan and a gly-colytic enzyme of Staphylococcus aureus to contact-mediated killing of Cryptococcus neoformans // J. Bacteri-ol. 2007. Vol. 189(13). P. 4815‒4826.

Kapitan M. et al. Fungi as part of the microbiota and interactions with intestinal bacteria // Curr. Top. Microbiol. Immunol. 2019. Vol. 422. P. 265‒301.

Kim J.Y. Human fungal pathogens: Why should we learn? // J. Microbiol. 2016 Vol. 54(3). P. 145‒148.

Köhler J.R. et al. Fungi that infect humans // Microbiol. Spectr. 2017. Vol. 5(3). 10.1128/microbiolspec.funk-0014-2016.

Krishnamoorthy A.L. et al. Interactions between Candida albicans and Enterococcus faecalis in an or-ganotypic oral epithelial model // Microorganisms. 2020. Vol. 8. Art. 1771.

Krüger W. et al. Fungal-bacterial interactions in health and disease // Pathogens. 2019. Vol. 8(2). Art. 70.

Kumari A., Singh R. Medically important interactions of staphylococci with pathogenic fungi // Future Microbiol. 2019. Vol. 14. P. 1159–1170.

Lai G.C., Tan T.G., Pavelka N. The mammalian mycobiome: A complex system in a dynamic relation-ship with the host // Wiley Interdiscip. Rev. Syst. Biol. Med. 2019. Vol. 11(1). Art. e1438.

Little W., Black C., Smith A.C. Clinical implications of polymicrobial synergism effects on antimicrobial susceptibility // Pathogens. 2021. Vol. 10(2). Art. 144.

Lueyar T.K. et al. Dynamic interactions between Candida albicans and different streptococcal species in a multispecies oral biofilm // Microbiologyopen. 2023. Vol. 12(5). Art. e1381.

Maas E., Penders J., Venema K. Studying fungal-bacterial relationships in the human gut using an in vitro model (TIM-2) // J. Fungi. 2023 Vol. 9. Art. 174.

Martins-Santana L. et al. Addressing microbial resistance worldwide: Challenges over controlling life-threatening fungal infections // Pathogens. 2023. Vol. 12. Art. 293.

Mayer F.L., Kronstad J.W. Disarming Fungal pathogens: Bacillus safensis inhibits virulence factor pro-duction and biofilm formation by Cryptococcus neoformans and Candida albicans // mBio. 2017. Vol. 8(5). Art. e01537-17.

Mayer F.L., Kronstad J.W. The spectrum of interactions between Cryptococcus neoformans and bacteria // J. Fungi. 2019. Vol. 5(2). Art. 31.

Metwalli K.H. et al. Streptococcus mutans, Candida albicans, and the human mouth: a sticky situation // PLoS Pathog. 2013. Vol. 9(10). Art. e1003616.

Mishra K., Bukavina L., Ghannoum M. Symbiosis and dysbiosis of the human mycobiome // Front. Mi-crobiol. 2021. Vol. 12. Art. 636131.

Mogavero S. et al. Enemies and brothers in arms: Candida albicans and gram-positive bacteria // Cell Microbiol. 2016. Vol. 18(12). P. 1709–1715.

Nogueira F. et al. Pathogenetic impact of bacterial-fungal interactions // Microorganisms. 2019. Vol. 7(10). Art. 459.

Oliveira M. et al. Clinical manifestations of human exposure to fungi // J. Fungi. 2023. Vol. 9(3). Art. 381.

Palmieri F. et al. Recent advances in fungal infections: From lung ecology to therapeutic strategies with a focus on Aspergillus spp. // Front. Med. 2022. Vol. 9. Art. 832510.

Parolin C. et al. Lactobacillus biofilms influence anti-Candida activity // Front. Microbiol. 2021. Vol. 12. Art. 750368.

Pohl C.H. Competition for iron during polymicrobial infections may Increase antifungal drug susceptibil-ity-Hhw will it impact treatment options? // Infect. Immun. 2022. Vol. 90(4). Art. e0005722.

Rodrigues M.E., Gomes F., Rodrigues C.F. Candida spp. Bacteria mixed biofilms // J. Fungi. 2020. Vol. 6(1). Art. 5.

Sam Q.H., Chang M.W., Chai L.Y. The fungal mycobiome and its interaction with gut bacteria in the host // Int. J. Mol. Sci. 2017. Vol. 18(2). Art. 330.

Santus W., Devlin J.R., Behnsen J. Crossing kingdoms: How the mycobiota and fungal-bacterial interac-tions impact host health and disease // Infect Immun. 2021. Vol. 89(4). Art. e00648-20.

Sharma A. et al. Associations between fungal and bacterial microbiota of airways and asthma endo-types// J. Allergy Clin. Immunol. 2019. Vol. 144(5). P. 1214–1227. Art. e7.

Sztukowska M.N. et al. Community development between Porphyromonas gingivalis and Candida al-bicans mediated by InlJ and Als3 // mBio. 2018. Vol. 9(2). Art. e00202-18.

Tan X. et al. Candida albicans airway colonization facilitates subsequent Acinetobacter baumannii pneumonia in a rat model // Antimicrob. Agents Chemother. 2016. Vol. 60(6). P. 3348–3354.

Todd O.A., Peters B.M. Candida albicans and Staphylococcus aureus pathogenicity and polymicrobial interactions: Lessons beyond Koch’s postulates // J. Fungi. 2019. Vol. 5. Art. 81.

van Leeuwen P.T. et al. Interspecies interactions between Clostridium difficile and Candida albicans // mSphere. 2016. Vol. 1(6). Art. e00187-16.

Wang F. et al. Interactions between invasive fungi and symbiotic bacteria // World J. Microbiol. Biotech-nol. 2020. Vol. 36(9). Art. 137.

Ward T.L. et al. Development of the human mycobiome over the first month of life and across body sites // mSystems. 2018. Vol. 3(3). Art. e00140-17.