Полногеномный поиск ассоциаций однонуклеотидных полиморфизмов с шириной груди у овец Северокавказской мясо-шерстной породы
##plugins.themes.bootstrap3.article.main##
Аннотация
##plugins.themes.bootstrap3.article.details##
Лицензионный договор на право использования научного произведения в научных журналах, учредителем которых является Пермский государственный национальный исследовательский университет
Текст Договора размещен на сайте Пермского государственного национального исследовательского университета http://www.psu.ru/, а также его можно получить по электронной почте в «Отделе научных периодических и продолжающихся изданий ПГНИУ»: YakshnaN@psu.ru или в редакциях научных журналов ПГНИУ.
Библиографические ссылки
, Абонеев В.В., Квитко Ю.Д., Селькин И.И. Методика оценки мясной продуктивности овец. Ставро-поль: СНИИЖК. 2009. 34 с.
, Криворучко А.Ю. и др. Гены-кандидаты, связан¬ные с шириной груди у овец породы российский мясной меринос // Сельскохозяйственный журнал. 2023. № 16(4). С. 2687–1254. https://doi.org/10.48612/FARC/2687-1254/015.4.16.2023
Омаров А.А., Гайдашов С.И. Продуктивные показатели овец Северокавказской мясо-шерстной по-роды и их взаимосвязь с основными селекционируемыми признаками // Вестник Алтайского государ-ственного аграрного университета. 2021. № 2(196). С. 66–72.
Яцык О.А. Сравнительная оценка показателей мясной продуктивности мериносовых овец россий-ских пород // Вестник Курганской ГСХА. 2017. № 3(23). С. 58–60.
Aiello D., Patel K., Lasagna E. The myostatin gene: An overview of mechanisms of action and its rele-vance to livestock animals // Animal Genetics. 2018. Vol. 49, № 6. P. 505–519. https://doi.org/10.1111/age.12696
Artioli G.G. et al. Role of beta-alanine supplementation on muscle carnosine and exercise performance // Medicine & Science in Sports & Exercise. 2010. Vol. 42(6). P. 1162–1173. https://doi.org/10.1249/mss.0b013e3181c74e38
Benavides M.V., Souza C.J.H., Moraes J.C.F. How efficiently Genome-Wide Association Studies (GWAS) identify prolificity-determining genes in sheep // Genetics and Molecular Research. 2018. Vol. 17(2). P. 9–14. http://dx.doi.org/10.4238/gmr16039909
Bhartiya D., Patel H. An overview of FSH-FSHR biology and explaining the existing conundrums // Jour-nal of Ovarian Research. 2021a. Vol. 14(1). Art. 144. https://doi.org/10.1186/s13048-021-00880-3
Bhartiya D. et al. Endogenous, tissue-resident stem/progenitor cells in gonads and bone marrow express FSHR and respond to FSH via FSHR-3 // Journal of Ovarian Research. 2021b. Vol. 14(1). Art. 145. https://doi.org/10.1186/s13048-021-00883-0
Ding R. et al. Single-Locus and Multi-Locus Genome-Wide Association Studies for Intramuscular Fat in Duroc Pigs // Frontiers in genetics. 2019. Vol. 10. Art. 619. https://doi.org/10.3389/fgene.2019.00619
Fabre S. et al. The Booroola mutation in sheep is associated with an alteration of the bone morphogenet-ic protein receptor-IB functionality // Journal of endocrinology. 2003. Vol. 177(3). P. 435–444. https://doi.org/10.1677/joe.0.1770435
Gebreselassie G. et al. Review on Genomic Regions and Candidate Genes Associated with Economically Important Production and Reproduction Traits in Sheep (Ovis aries) // Animals. 2019. Vol. 10, № 1. Art. 33. https://doi.org/10.3390/ani10010033
Guan F. et al. Polymorphism of FecB gene in nine sheep breeds or strains and its effects on litter size, lamb growth and development // Animal reproduction science. 2007. Vol. 99(1-2). P. 44–52. https://doi.org/10.1016/j.anireprosci.2006.04.048
Kong D. et al. Expression of FSHR in chondrocytes and the effect of FSH on chondrocytes // Biochemi-cal and biophysical research communications. 2018. Vol. 495(1). P. 587–593. https://doi.org/10.1016/j.bbrc.2017.11.053
Krivoruchko A. et al. Genome-Wide Search for Candidate Genes of Meat Production in Jalgin Merino Considering Known Productivity Genes // Genes. 2022. Vol. 13(8). Art. 1337. https://doi.org/10.3390/genes13081337
Li H. et al. Genome-Wide Association Studies for Flesh Color and Intramuscular Fat in (Duroc × Land-race × Large White) Crossbred Commercial Pigs // Genes. 2022. Vol. 13(11). Art. 2131. https://doi.org/10.3390/genes13112131
Lim D. et al. Characterization of genes for beef marbling based on applying gene coexpression network // International journal of genomics. 2014. Vol. 2014. Art. 708562. https://doi.org/10.1155/2014/708562
Mang T. et al. BMPR1A is necessary for chondrogenesis and osteogenesis, whereas BMPR1B prevents hypertrophic differentiation // Journal of cell science. 2020. Vol. 133(16). Art. jcs246934. https://doi.org/10.1242/jcs.246934
Manzetti S., Zhang J., van der Spoel D. Thiamin function, metabolism, uptake, and transport // Bio-chemistry. 2014. Vol. 53(5). P. 821–835. https://doi.org/10.1021/bi401618y
Margawati E.T. et al. Detection of carrier Booroola (FecB) allele in BMPR1B gene of MEGA (Meri-no × Garut) sheep and its association with growth traits // Journal, genetic engineering & biotechnology. 2023. Vol. 21(1). Art. 19. https://doi.org/10.1186/s43141-023-00475-z
Nissinen T.A. et al. Muscle follistatin gene delivery increases muscle protein synthesis independent of pe-riodical physical inactivity and fasting // FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2021. Vol. 35(3). Art. e21387. https://doi.org/10.1096/fj.202002008r
Osman N.M. et al. Genetic variations in the Myostatin gene affecting growth traits in sheep // Veterinary World. 2021. Vol. 14, № 2. Art. 475. https://doi.org/10.14202/vetworld.2021.475-482
Purcell S., Neale B., Todd-Brown K. PLINK: a tool set for whole-genome association and population-based linkage analyses // American Journal of Human Genetics. 2007. Vol. 81. P. 559–575. https://doi.org/10.14202/vetworld.2021.475-482
Rajgopal A. et al. SLC19A3 encodes a second thiamine transporter ThTr2 // Biochimica et biophysica acta. 2001. Vol. 1537(3). P. 175–178. https://doi.org/10.1016/s0925-4439(01)00073-4
Santana M.H. et al. A genomewide association mapping study using ultrasound-scanned information identifies potential genomic regions and candidate genes affecting carcass traits in Nellore cattle // Journal of animal breeding and genetics. 2015. Vol. 132(6). P. 420–427. https://doi.org/10.1111/jbg.12167
Sousa-Junior L.P.B. et al. Variants in myostatin and MyoD family genes are associated with meat quality traits in Santa Inês sheep // Animal biotechnology. 2022. Vol. 33, № 2. P. 201–213. DOI: 10.1080/10495398.2020.1781651
Su J. et al. Study on the changes of LHR, FSHR and AR with the development of testis cells in Hu sheep // Animal reproduction science. 2023. Vol. 256. Art. 107306. https://doi.org/10.1016/j.anireprosci.2023.107306
Suocheng W. et al. Maturation rates of oocytes and lev¬els of FSHR, LHR and GnRHR of COCs response to FSH concentrations in IVM media for sheep // Journal of Applied Biomedicine. 2017. Vol. 15(3). P. 180–186. https://doi.org/10.1016/j.jab.2017.01.001
Tobar K.M.C., Álvarez D.C.L., Franco L. Á.Á. Genome-wide association studies in sheep from Latin America. Review // Revista Mexicana de Ciencias Pecuarias. 2020. Vol. 11(3). P. 859–883. https://doi.org/10.22319/rmcp.v11i3.5372
Tuersuntuoheti M. et al. Exploring the growth trait molecular markers in two sheep breeds based on Ge-nome-wide association analysis // PLoS One. 2023. Vol. 18(3). Art. e0283383. https://doi.org/10.1371/journal.pone.0283383
Utami A.M. et al. Relative expression of hormone receptors by endothelial and smooth muscle cells in proliferative and non-proliferative areas of congenital arteriovenous malformations // European journal of medical research. 2023. Vol. 28(1). Art. 449. https://doi.org/10.1186/s40001-023-01436-5
Wang W. et al. Polymorphisms of the Ovine BMPR-IB, BMP-15 and FSHR and Their Associations with Litter Size in Two Chinese Indigenous Sheep Breeds // International journal of molecular sciences. 2015. Vol. 16(5). P. 11385–11397. https://doi.org/10.3390/ijms160511385
Wei X. et al. Characterization of the human dihydropyrimidine dehydrogenase gene // Genomics. 1998. Vol. 51 (3). P. 391–400. https://doi.org/10.1006/geno.1998.5379
Wu Z. et al. Regulation mechanism and functional verification of key func¬tional genes regulating muscle development in black Tibetan sheep // Gene. 2023. Vol. 868. Art. 147375. https://doi.org/10.1016/j.gene.2023.147375
Xiaoyun H. et al. Expression and Polymorphism of FSHR Gene in Sheep with Different Fecundity // Pa-kistan Journal of Zoology. 2022. Vol. 54. P. 667–675. https://dx.doi.org/10.17582/journal.pjz/20190215010208
Yamamoto K. et al. Largen: a molecular regulator of mammalian cell size control // Molecular cell. 2014. Vol. 53(6). P. 904–915. https://doi.org/10.1016/j.molcel.2014.02.028