Genome-wide association study with of single nucleotide polymorphisms with chest width in in Severocavcazskaya sheep breed

Main Article Content

Roman V. Zuev
Alexander Yu. Krivoruchko
Natalia G. Likhovid
Olga N. Krivoruchko

Abstract

The growing global demand for lamb poses the challenge for breeders to increase the meat produc­tivity of existing sheep breeds. It depends on the combined influence of a large number of genes influencing the development of muscle tissue. Many of them have not yet been described as candidate genes for productive qualities, since the influence of genes may vary depending on the breed and living conditions of the animals. One of the most effective methods for searching for such genes is genome-wide association study (GWAS). The article presents GWAS results for the parameter “chest width” associated with meat productivity in sheep of the Severocavcazskaya sheep breed. Animal genotypeing was carried out using Illumina Ovine Infinium HD Bead­Chip 600K DNA biochips. Quality control of genotyping and GWAS were carried out using PLINK V.1.07 software. Visualization and plotting were performed using the “QQman” package in the “R” programming lan­guage. As a result, it was possible to identify 9 single nucleotide polymorphisms (SNPs) that showed a signifi­cant connection with the studied phenotypic trait. Eight substitutions are localized in the introns of protein-cod­ing genes, and the rs417623542 substitution is located in the exon. On this basis, we proposed 5 candidate genes associated with the studied parameter: DPYD, FSHR, PRR16, SLC19A3 and BMPR1B. The DPYD and SLC19A3 genes play an important role in metabolism; the FSHR, PRR16 and BMPR1B genes are involved in the regula­tion of cell growth and cell differentiation. Subsequent studies should be aimed at studying the structure of these genes to identify the mechanism of their influence on the parameters of animal meat productivity. The SNPs identified during the study can be used as molecular markers in sheep breeding.

Article Details

How to Cite
Zuev Р. В. ., Krivoruchko А. Ю. ., Likhovid Н. Г. ., & Krivoruchko О. Н. . (2024). Genome-wide association study with of single nucleotide polymorphisms with chest width in in Severocavcazskaya sheep breed. Bulletin of Perm University. Biology, (3), 318‒326. https://doi.org/10.17072/1994-9952-2024-3-318-326
Section
Генетика
Author Biographies

Roman V. Zuev, North Caucasus Federal University, Stavropol, Russia

researcher at the laboratory of biological and medical informatics, Faculty of Medicine and Biology

Alexander Yu. Krivoruchko, North Caucasus Federal Agricultural Research Center, Stavropol, Russia

doctor of biology, Professor of the Base Department of Genetics and Selection, Faculty of Medicine and Biology, head of Department of Genetics and Biotechnology

References

, Абонеев В.В., Квитко Ю.Д., Селькин И.И. Методика оценки мясной продуктивности овец. Ставро-поль: СНИИЖК. 2009. 34 с.

, Криворучко А.Ю. и др. Гены-кандидаты, связан¬ные с шириной груди у овец породы российский мясной меринос // Сельскохозяйственный журнал. 2023. № 16(4). С. 2687–1254. https://doi.org/10.48612/FARC/2687-1254/015.4.16.2023

Омаров А.А., Гайдашов С.И. Продуктивные показатели овец Северокавказской мясо-шерстной по-роды и их взаимосвязь с основными селекционируемыми признаками // Вестник Алтайского государ-ственного аграрного университета. 2021. № 2(196). С. 66–72.

Яцык О.А. Сравнительная оценка показателей мясной продуктивности мериносовых овец россий-ских пород // Вестник Курганской ГСХА. 2017. № 3(23). С. 58–60.

Aiello D., Patel K., Lasagna E. The myostatin gene: An overview of mechanisms of action and its rele-vance to livestock animals // Animal Genetics. 2018. Vol. 49, № 6. P. 505–519. https://doi.org/10.1111/age.12696

Artioli G.G. et al. Role of beta-alanine supplementation on muscle carnosine and exercise performance // Medicine & Science in Sports & Exercise. 2010. Vol. 42(6). P. 1162–1173. https://doi.org/10.1249/mss.0b013e3181c74e38

Benavides M.V., Souza C.J.H., Moraes J.C.F. How efficiently Genome-Wide Association Studies (GWAS) identify prolificity-determining genes in sheep // Genetics and Molecular Research. 2018. Vol. 17(2). P. 9–14. http://dx.doi.org/10.4238/gmr16039909

Bhartiya D., Patel H. An overview of FSH-FSHR biology and explaining the existing conundrums // Jour-nal of Ovarian Research. 2021a. Vol. 14(1). Art. 144. https://doi.org/10.1186/s13048-021-00880-3

Bhartiya D. et al. Endogenous, tissue-resident stem/progenitor cells in gonads and bone marrow express FSHR and respond to FSH via FSHR-3 // Journal of Ovarian Research. 2021b. Vol. 14(1). Art. 145. https://doi.org/10.1186/s13048-021-00883-0

Ding R. et al. Single-Locus and Multi-Locus Genome-Wide Association Studies for Intramuscular Fat in Duroc Pigs // Frontiers in genetics. 2019. Vol. 10. Art. 619. https://doi.org/10.3389/fgene.2019.00619

Fabre S. et al. The Booroola mutation in sheep is associated with an alteration of the bone morphogenet-ic protein receptor-IB functionality // Journal of endocrinology. 2003. Vol. 177(3). P. 435–444. https://doi.org/10.1677/joe.0.1770435

Gebreselassie G. et al. Review on Genomic Regions and Candidate Genes Associated with Economically Important Production and Reproduction Traits in Sheep (Ovis aries) // Animals. 2019. Vol. 10, № 1. Art. 33. https://doi.org/10.3390/ani10010033

Guan F. et al. Polymorphism of FecB gene in nine sheep breeds or strains and its effects on litter size, lamb growth and development // Animal reproduction science. 2007. Vol. 99(1-2). P. 44–52. https://doi.org/10.1016/j.anireprosci.2006.04.048

Kong D. et al. Expression of FSHR in chondrocytes and the effect of FSH on chondrocytes // Biochemi-cal and biophysical research communications. 2018. Vol. 495(1). P. 587–593. https://doi.org/10.1016/j.bbrc.2017.11.053

Krivoruchko A. et al. Genome-Wide Search for Candidate Genes of Meat Production in Jalgin Merino Considering Known Productivity Genes // Genes. 2022. Vol. 13(8). Art. 1337. https://doi.org/10.3390/genes13081337

Li H. et al. Genome-Wide Association Studies for Flesh Color and Intramuscular Fat in (Duroc × Land-race × Large White) Crossbred Commercial Pigs // Genes. 2022. Vol. 13(11). Art. 2131. https://doi.org/10.3390/genes13112131

Lim D. et al. Characterization of genes for beef marbling based on applying gene coexpression network // International journal of genomics. 2014. Vol. 2014. Art. 708562. https://doi.org/10.1155/2014/708562

Mang T. et al. BMPR1A is necessary for chondrogenesis and osteogenesis, whereas BMPR1B prevents hypertrophic differentiation // Journal of cell science. 2020. Vol. 133(16). Art. jcs246934. https://doi.org/10.1242/jcs.246934

Manzetti S., Zhang J., van der Spoel D. Thiamin function, metabolism, uptake, and transport // Bio-chemistry. 2014. Vol. 53(5). P. 821–835. https://doi.org/10.1021/bi401618y

Margawati E.T. et al. Detection of carrier Booroola (FecB) allele in BMPR1B gene of MEGA (Meri-no × Garut) sheep and its association with growth traits // Journal, genetic engineering & biotechnology. 2023. Vol. 21(1). Art. 19. https://doi.org/10.1186/s43141-023-00475-z

Nissinen T.A. et al. Muscle follistatin gene delivery increases muscle protein synthesis independent of pe-riodical physical inactivity and fasting // FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2021. Vol. 35(3). Art. e21387. https://doi.org/10.1096/fj.202002008r

Osman N.M. et al. Genetic variations in the Myostatin gene affecting growth traits in sheep // Veterinary World. 2021. Vol. 14, № 2. Art. 475. https://doi.org/10.14202/vetworld.2021.475-482

Purcell S., Neale B., Todd-Brown K. PLINK: a tool set for whole-genome association and population-based linkage analyses // American Journal of Human Genetics. 2007. Vol. 81. P. 559–575. https://doi.org/10.14202/vetworld.2021.475-482

Rajgopal A. et al. SLC19A3 encodes a second thiamine transporter ThTr2 // Biochimica et biophysica acta. 2001. Vol. 1537(3). P. 175–178. https://doi.org/10.1016/s0925-4439(01)00073-4

Santana M.H. et al. A genomewide association mapping study using ultrasound-scanned information identifies potential genomic regions and candidate genes affecting carcass traits in Nellore cattle // Journal of animal breeding and genetics. 2015. Vol. 132(6). P. 420–427. https://doi.org/10.1111/jbg.12167

Sousa-Junior L.P.B. et al. Variants in myostatin and MyoD family genes are associated with meat quality traits in Santa Inês sheep // Animal biotechnology. 2022. Vol. 33, № 2. P. 201–213. DOI: 10.1080/10495398.2020.1781651

Su J. et al. Study on the changes of LHR, FSHR and AR with the development of testis cells in Hu sheep // Animal reproduction science. 2023. Vol. 256. Art. 107306. https://doi.org/10.1016/j.anireprosci.2023.107306

Suocheng W. et al. Maturation rates of oocytes and lev¬els of FSHR, LHR and GnRHR of COCs response to FSH concentrations in IVM media for sheep // Journal of Applied Biomedicine. 2017. Vol. 15(3). P. 180–186. https://doi.org/10.1016/j.jab.2017.01.001

Tobar K.M.C., Álvarez D.C.L., Franco L. Á.Á. Genome-wide association studies in sheep from Latin America. Review // Revista Mexicana de Ciencias Pecuarias. 2020. Vol. 11(3). P. 859–883. https://doi.org/10.22319/rmcp.v11i3.5372

Tuersuntuoheti M. et al. Exploring the growth trait molecular markers in two sheep breeds based on Ge-nome-wide association analysis // PLoS One. 2023. Vol. 18(3). Art. e0283383. https://doi.org/10.1371/journal.pone.0283383

Utami A.M. et al. Relative expression of hormone receptors by endothelial and smooth muscle cells in proliferative and non-proliferative areas of congenital arteriovenous malformations // European journal of medical research. 2023. Vol. 28(1). Art. 449. https://doi.org/10.1186/s40001-023-01436-5

Wang W. et al. Polymorphisms of the Ovine BMPR-IB, BMP-15 and FSHR and Their Associations with Litter Size in Two Chinese Indigenous Sheep Breeds // International journal of molecular sciences. 2015. Vol. 16(5). P. 11385–11397. https://doi.org/10.3390/ijms160511385

Wei X. et al. Characterization of the human dihydropyrimidine dehydrogenase gene // Genomics. 1998. Vol. 51 (3). P. 391–400. https://doi.org/10.1006/geno.1998.5379

Wu Z. et al. Regulation mechanism and functional verification of key func¬tional genes regulating muscle development in black Tibetan sheep // Gene. 2023. Vol. 868. Art. 147375. https://doi.org/10.1016/j.gene.2023.147375

Xiaoyun H. et al. Expression and Polymorphism of FSHR Gene in Sheep with Different Fecundity // Pa-kistan Journal of Zoology. 2022. Vol. 54. P. 667–675. https://dx.doi.org/10.17582/journal.pjz/20190215010208

Yamamoto K. et al. Largen: a molecular regulator of mammalian cell size control // Molecular cell. 2014. Vol. 53(6). P. 904–915. https://doi.org/10.1016/j.molcel.2014.02.028