Differentiated impact assessment of the biogenic polyamines and alarmone synthetase RelMsm on the sliding motility of Mycobacterium smegmatis

Main Article Content

Ivan V. Tsyganov
Larisa Yu. Nesterova
Alexander G. Tkachenko

Abstract

The present article is devoted to the method for comparative analysis of sliding colonies. This new method includes measuring the density of bacterial cells in a monolayer. Using this method, we studied the effect of biogenic polyamines and alarmone synthetase RelMsm on Mycobacterium smegmatis sliding motility and showed a multidirectional effect of spermidine and spermine on sliding, as well as an increase in sliding motility by a strain with a relMsm deletion. It is also shown that there is no dependence between the sliding of mycobacteria and their hydrophobicity.

Article Details

How to Cite
Tsyganov И. В., Nesterova Л. Ю., & Tkachenko А. Г. (2024). Differentiated impact assessment of the biogenic polyamines and alarmone synthetase RelMsm on the sliding motility of Mycobacterium smegmatis. Bulletin of Perm University. Biology, (4), 401–411. https://doi.org/10.17072/1994-9952-2024-4-401-411
Section
Микробиология
Author Biographies

Ivan V. Tsyganov, Institute of Ecology and Genetics of Microorganisms of the Perm Federal Research Center of Ural Branch RAS

Engineer of the Laboratory of Adaptation of Microorganisms, Junior Researcher of the Laboratory of Organic Synthesis

Larisa Yu. Nesterova, Institute of Ecology and Genetics of Microorganisms of the Perm Federal Research Center of Ural Branch RAS

Candidate of Biology, Senior Scientist of the Laboratory of Adaptation of Microorganisms, Associate Professor, Department of Plant Physiology and Soil Ecology

Alexander G. Tkachenko , Institute of Ecology and Genetics of Microorganisms of the Perm Federal Research Center of Ural Branch RAS

Doctor of Medicine, Head of the Laboratory of Adaptation of Microorganisms, professor of the Department of microbiology and immunology

References

Цыганов И.В., Нестерова Л.Ю., Ткаченко А.Г. Скольжение бактерий: способ пассивного распро-странения без использования жгутиков и пилей (обзор) // Вестник Пермского университета. Сер. Биоло-гия. 2021. Вып. 4. С. 263–274. DOI: 10.17072/1994-9952-2021-4-263-274.

Brennan P.J., Nikaido H. The envelope of mycobacteria // Annual Review of Biochemistry. 1995. Vol. 64. P. 29–63. DOI: 10.1146/annurev.bi.64.070195.000333.

Chakraborty P., Kumar A. The extracellular matrix of mycobacterial biofilms: could we shorten the treatment of mycobacterial infections? // Microbial Cell. 2019. Vol. 6, № 2. P. 105–122. DOI: 10.15698/mic2019.02.667.

Daffé M., Draper P. The envelope layers of mycobacteria with reference to their pathogenicity // Advanc-es in microbial physiology. 1997. Vol. 39. P. 131–203. DOI: 10.1016/s0065-2911(08)60016-8.

Ghosh S., Indi S.S., Nagaraja V. Regulation of lipid biosynthesis, sliding motility, and biofilm formation by a membrane-anchored nucleoid-associated protein of Mycobacterium tuberculosis // Journal of bacteriology. 2013. Vol. 195, № 8. P. 1769–1778. DOI: 10.1128/JB.02081-12.

Gupta K.R. et al. Regulation of growth, cell shape, cell division and gene expression by second messengers (p) ppGpp and c-di-GMP in Mycobacterium smegmatis // Journal of bacteriology. 2016. Vol. 198, № 9. P. 1414–1422. DOI: 10.1128/JB.00126-16.

Gupta K.R., Kasetty S., Chatterji D. Novel functions of (p)ppGpp and Cyclic di-GMP in mycobacterial physiology revealed by phenotype microarray analysis of wild-type and isogenic strains of Mycobacterium smegmatis // Applied Environmental Microbiology. 2015. Vol. 81, № 7. P. 2571–2578. DOI: 10.1128/AEM.03999-14.

Henrichsen J. Bacterial surface translocation: a survey and a classification // Bacteriological reviews. 1972. Vol. 36, № 4. P. 478–503. DOI: 10.1128/br.36.4.478-503.1972.

Hölscher T., Kovács Á.T. Sliding on the surface: bacterial spreading without an active motor // Environ Microbiology. 2017. Vol. 19, № 7. P. 2537–2545. DOI: 10.1111/1462-2920.13741.

Igarashi K., Kashiwagi K. Modulation of cellular function by polyamines // The International Journal of Biochemistry & Cell Biology. 2010. Vol. 42, № 1. P. 39–51. DOI: 10.1016/j.biocel.2009.07.009.

Lai L.Y. et al. Role of the Mycobacterium marinum ESX-1 Secretion System in Sliding Motility and Bio-film Formation // Frontiers in Microbiology. 2018. Vol. 9. Art. 1160. DОI: 10.3389/fmicb.2018.01160

Martínez A., Torello S., Kolter R. Sliding motility in mycobacteria // Journal of bacteriology. 1999. Vol. 181, № 23. P. 7331–7338. DOI: 10.1128/JB.181.23.7331-7338.1999.

McNeil M.B., Dennison D., Parish T. Mutations in MmpL3 alter membrane potential, hydrophobicity and antibiotic susceptibility in Mycobacterium smegmatis // Microbiology. 2017. Vol. 163, № 7. P. 1065–1070. DOI: 10.1099/mic.0.000498.

Mohan A. et al. Complete Genome Sequences of a Mycobacterium smegmatis Laboratory Strain (MC2 155) and Isoniazid-Resistant (4XR1/R2) Mutant Strains // Genome Announcements. 2015. Vol. 3, № 1. Art. e01520-14. DOI: 10.1128/genomeA.01520-14.

Nesterova L.Yu., Tsyganov I.V., Tkachenko A.G. Biogenic Polyamines Influence the Antibiotic Suscep-tibility and Cell-Surface Properties of Mycobacterium smegmatis // Applied Biochemistry and Microbiology. 2020. Vol. 56, № 4. Р. 387–394. DOI: 10.1134/S0003683820040110.

Petchiappan A., Naik S.Y., Chatterji D. RelZ-Mediated Stress Response in Mycobacterium smegmatis: ppGpp Synthesis and Its Regulation // Journal of Bacteriology. 2020. Vol. 202, № 2. Art. e00444-19. DOI: 10.1128/JB.00444-19.

Primm T.P. et al. III. The stringent response of Mycobacterium tuberculosis is required for long-term sur-vival // Journal of Bacteriology. 2000. Vol. 182. P. 4889–4898. DOI: 10.1128/jb.182.17.4889-4898.2000.

Prossliner T. et al. Ribosome Hibernation // Annual Review of Genetics. 2018. Vol. 23, № 52. Р. 321–348. DOI: 10.1146/annurev-genet-120215-035130.

Recht J. et al. Genetic Analysis of Sliding Motility in Mycobacterium smegmatis // Journal of bacteriolo-gy. 2000 Vol. 182, № 15. P. 4348–4351. DOI: 10.1128/JB.182.15.4348-4351.2000.

Schorey J.S., Sweet L. The mycobacterial glycopeptidolipids: structure, function, and their role in patho-genesis // Glycobiology. 2008. Vol. 18, № 11. P. 832–841. DOI: 10.1093/glycob/cwn076.

Tsyganov I.V., Tkachenko A.G. Effect of biogenic polyamines on sliding motility of mycobacteria in the presence of antibiotics // Vavilovskii Zhurnal Genetiki i Selektsii. 2022. Vol. 26, № 5. P. 458–466. DOI: 10.18699/VJGB-22-56.

Zamakhaev M. et al. Mycolicibacterium smegmatis possesses operational agmatinase but contains no detectable polyamines // International Journal of Mycobacteriology. 2020. Vol. 9, № 2. P. 138–143. DOI: 10.4103/ijmy.ijmy_48_20.

Zegadło K. et al. Bacterial Motility and Its Role in Skin and Wound Infections // International Journal of Molecular Sciences. 2023. Vol. 24, № 2. Art. 1707. DOI: 10.3390/ijms24021707.