Клеточная линия MCF-7: характеристика и взаимодействие с наноматериалами разной структуры
##plugins.themes.bootstrap3.article.main##
Аннотация
##plugins.themes.bootstrap3.article.details##
Лицензионный договор на право использования научного произведения в научных журналах, учредителем которых является Пермский государственный национальный исследовательский университет
Текст Договора размещен на сайте Пермского государственного национального исследовательского университета http://www.psu.ru/, а также его можно получить по электронной почте в «Отделе научных периодических и продолжающихся изданий ПГНИУ»: YakshnaN@psu.ru или в редакциях научных журналов ПГНИУ.
Библиографические ссылки
Комарова Л.Н., Мельникова А.А., Балдов Д.А. Исследование комбинированного действия ионизирующего излучения и доксорубицина на клетках аденокарциномы молочной железы человека линии MCF-7 // Научные междисциплинарные исследования: материалы XIII Междунар. науч.-практ. конф. / под ред. Н.В. Емельянова. М.: КДУ, Добросвет, 2021. С. 14–21.
Ляпун И.Н. Биологические аспекты безопасности клеточных культур in vitro // Молекулярная генетика, микробиология и вирусология. 2021. Т. 39, № 3. С. 3–9.
Межевова И.В., Ситковская А.О., Кит О.И. Первичные культуры опухолевых клеток: современные методы получения и поддержания in vitro// Южно-Российский онкологический журнал. 2020. Т. 1, № 3. С. 36–49.
Abed A.S., Mishaal Mohammed A., Khalaf Y.H. Novel photothermal therapy using platinum nanoparticles in synergy with near-infrared radiation (NIR) against human breast cancer MCF-7 cell line // Results Chem. 2022. Vol. 4, № 1-2. Art. 100591.
Adil S.F. et al. Enhanced Apoptosis by Functionalized Highly Reduced Graphene Oxide and Gold Nanocomposites in MCF-7 Breast Cancer Cells // ACS Omega. 2021. Vol. 6, № 23. P. 15147–15155.
Aghapour F. et al. Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines // Biochem. Biophys. Res. Commun. 2018. Vol. 500, № 4. P. 860–865.
Ahamed M. et al. Copper ferrite nanoparticle-induced cytotoxicity and oxidative stress in human breast cancer MCF-7 cells // Colloids Surf. B Biointerfaces. 2016. Vol. 142. P. 46–54.
Aiyer S., et al. Fluorescent carbon nanodots for targeted in vitro cancer cell imaging // Appl. Mater. Today. 2016. Vol. 4. P. 71–77.
Alsaedi I.I.J. et al. Graphene nanoparticles induces apoptosis in MCF-7 cells through mitochondrial damage and NF-KB pathway // Mater. Res. Express. 2019. Vol. 6, № 9. Art. 095413.
American Type Culture Collection [Электронный ресурс]. URL: https://www.atcc.org/products/htb-22 (дата обращения: 15.11.2023).
Arasu M.V. et al. Synthesis and characterization of ZnO nanoflakes anchored carbon nanoplates for antioxidant and anticancer activity in MCF7 cell lines // Mater. Sci. Eng. C. Synthesized on Cellulose Nanocrystals // Adv. Opt. Mater. 2019. Vol. 8, № 4. P. 536–540. doi: 10.1016/j.msec.2019.04.068.
Chekini M. et al. Chiral Carbon Dots Synthesized on Cellulose Nanocrystals // Adv. Opt. Mater. 2019. Vol. 8, № 4. Art. 1901911.
Comşa Ş., Cîmpean A.M., Raica M. The Story of MCF-7 Breast Cancer Cell Line: 40 years of Experience in Research // Anticancer Res. 2015. P. 3147–3154.
Cytion: human and animal cell bank [Электронный ресурс]. URL: https://cytion.com/Knowledge-Hub/Cell-Line-Insights/mcf-7-cells/ (дата обращения: 18.12.2023).
Daniluk K. et al. Use of Selected Carbon Nanoparticles as Melittin Carriers for MCF-7 and MDA-MB-231 Human Breast Cancer Cells // Materials. 2019. Vol. 13. № 1. Art. 90.
Desai D., Shende P. Strategic Aspects of NPY-Based Monoclonal Antibodies for Diagnosis and Treatment of Breast Cancer // Curr. Protein Pept. Sci. 2020. Vol. 21, № 11. P. 1097–1102.
Dong K. et al. Cinnamaldehyde and Doxorubicin Co-Loaded Graphene Oxide Wrapped Mesoporous Silica Nanoparticles for Enhanced MCF-7 Cell Apoptosis // Int. J. Nanomedicine. 2020. Vol. 15. P. 10285–10304.
Franco-Molina M.A. et al. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells // J. Exp. Clin. Cancer Res. 2010. Vol. 29, № 1. Art. 148.
Gándola Y.B. et al. Mitogenic Effects of Phosphatidylcholine Nanoparticles on MCF-7 Breast Cancer Cells // BioMed Res. Int. 2014. Vol. 2014. P. 1–13. doi: 10.1155/2014/687037.
Garriga R. et al. Toxicity of Carbon Nanomaterials and Their Potential Application as Drug Delivery Systems: In Vitro Studies in Caco-2 and MCF-7 Cell Lines // Nanomaterials. 2020. Vol 10, № 8. Art. 1617.
Gu J. et al. Hydrophilic mesoporous carbon nanoparticles as carriers for sustained release of hydrophobic anti-cancer drugs // Chem Commun. 2011. Vol. 47, № 7. P. 2101–2103.
Hart V. et al. HER2-PI9 and HER2-I12: two novel and functionally active splice variants of the oncogene HER2 in breast cancer // J. Cancer Res. Clin. Oncol. 2021. Vol. 147, № 10. P. 2893–2912.
Hegde S.M. et al. Interplay of nuclear receptors (ER, PR, and GR) and their steroid hormones in MCF-7 cells // Mol. Cell. Biochem. 2016. Vol. 422, № 1–2. P. 109–120.
Jafarinejad-Farsangi S. et al. Curcumin loaded on graphene nanosheets induced cell death in mammospheres from MCF-7 and primary breast tumor cells // Biomed. Mater. 2021. Vol. 16, № 4. Art. 045040.
Jang S.J. et al. In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells // Mater. Sci. Eng. C. 2016. Vol. 68. P. 430–435.
Jiang P. et al. Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF-7 cells // Appl. Microbiol. Biotechnol. 2013. Vol. 97, № 3. P. 1051–1062.
Kajani A.A. et al. Carbon dot incorporated mesoporous silica nanoparticles for targeted cancer therapy and fluorescence imaging // RSC Adv. 2023. Vol. 13, № 14. P. 9491–9500.
Karmakar A. et al. Radio-frequency induced in vitro thermal ablation of cancer cells by EGF functionalized carbon-coated magnetic nanoparticles // J. Mater. Chem. 2011. Vol. 21, № 34. P. 12761–12769.
Katuwavila N. et al. Chitosan-Alginate Nanoparticle System Efficiently Delivers Doxorubicin to MCF-7 Cells // J. Nanomater. 2016. Vol. 2016, № 1. P. 1–12. DOI: 10.1155/2016/3178904.
Kavitha G. et al. Apoptotic efficacy of biogenic argentum nanoparticles embedded by activated carbon on MCF-7 human breast cancer cell lines // Inorg. Chem. Commun. 2022. Vol. 144, № 5. Art. 109689.
Kern F.G. et al. Transfected MCF-7 cells as a model for breast cancer progression // Breast Cancer Res. Treat. 1994. Vol. 31, № 2–3. P. 153–165.
Khan M.M., Filipczak N., Torchilin V.P. Cell penetrating peptides: A versatile vector for co-delivery of drug and genes in cancer // J. Controlled Release. 2021. Vol. 330. P. 1220–1228.
Kumar S.S.D. et al. Synthesis and characterization of curcumin loaded polymer/lipid based nanoparticles and evaluation of their antitumor effects on MCF-7 cells // Biochim. Biophys. Acta BBA - Gen. Subj. 2014. Vol. 1840, № 6. P. 1913–1922.
Lee A.V., Oesterreich S., Davidson N.E. MCF-7 Cells--Changing the Course of Breast Cancer Research and Care for 45 Years // JNCI J. Natl. Cancer Inst. 2015. Vol. 107, № 7. Art. djv073.
Li J. et al. Dose-Related Alterations of Carbon Nanoparticles in Mammalian Cells Detected Using Biospectroscopy: Potential for Real-World Effects // Environ. Sci. Technol. 2013. Vol. 47, № 17. P. 10005–10011.
Liu X. et al. Biocompatible multi-walled carbon nanotube-chitosan–folic acid nanoparticle hybrids as GFP gene delivery materials // Colloids Surf. B Biointerfaces. 2013. Vol. 111. P. 224–231.
Llames S. et al. Feeder Layer Cell Actions and Applications // Tissue Eng. Part B Rev. 2015. Vol. 21, № 4. P. 345–353.
Meacham W.D. et al. Sphingolipids as Determinants of Apoptosis and Chemoresistance in the MCF-7 Cell Model System // Exp. Biol. Med. 2009. Vol. 234, № 11. P. 1253–1263.
Meena R. et al. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7) // J. Nanoparticle Res. 2012. Vol. 14, № 2. Art. 712.
Mirabdollahi M., Haghjooy Javanmard S., Sadeghi-Aliabadi H. In Vitro Assessment of Cytokine Expression Profile of MCF-7 Cells inResponse to hWJ-MSCs Secretome // Adv. Pharm. Bull. 2019. Vol. 9, № 4. P. 649–654.
Misra S.K. et al. Next Generation Carbon Nanoparticles for Efficient Gene Therapy // Mol. Pharm. 2015. Vol. 12, № 2. P. 375–385.
Mohammadi H. et al. Evaluation of synthesized platinum nanoparticles on the MCF-7 and HepG-2 cancer cell lines // Int. Nano Lett. 2013. Vol. 3, № 1. Art. 28.
Mohammed S.A.A. et al. Copper Oxide Nanoparticle-Decorated Carbon Nanoparticle Composite Colloidal Preparation through Laser Ablation for Antimicrobial and Antiproliferative Actions against Breast Cancer Cell Line, MCF-7 // BioMed Res. Int. 2022. Vol. 2022. P. 1–13.
Murawala P. et al. In situ synthesized BSA capped gold nanoparticles: Effective carrier of anticancer drug Methotrexate to MCF-7 breast cancer cells // Mater. Sci. Eng. C. 2014. Vol. 34. P. 158–167.
Murugan K. et al. Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7) // Parasitol. Res. 2016. Vol. 115, № 3. P. 1085–1096.
National Center of Biotechnology Information [Электронный ресурс]. URL: https://www.ncbi.nlm.nih.gov/gene (дата обращения: 13.02.2024).
Nayak D. et al. Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: Characterization and cytotoxic effect on MCF-7 breast cancer cell lines // J. Colloid Interface Sci. 2016. Vol. 470 (May). P. 142–152.
Nivethaa E.A.K. et al. A comparative study of 5-Fluorouracil release from chitosan/silver and chitosan/silver/MWCNT nanocomposites and their cytotoxicity towards MCF-7 // Mater. Sci. Eng. C. 2016. Vol. 66. P. 244–250.
Osborne C.K., Hobbs K., Trent J.M. Biological differences among MCF-7 human breast cancer cell lines from different laboratories // Breast Cancer Res. Treat. 1987. Vol. 9, № 2. P. 111–121.
Pai С. et al. Carbon Nanotube-Mediated Photothermal Disruption of Endosomes/Lysosomes Reverses Doxorubicin Resistance in MCF-7/ADR Cells // J. Biomed. Nanotechnol. 2016. Vol. 12, № 4. P. 619–629.
Perou C.M. et al. Molecular portraits of human breast tumours // Nature. 2000. Vol. 406, № 6797. P. 747–752.
Şahin B. et al. Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line // Colloids Surf. B Biointerfaces. 2018. Vol. 163. P. 119–124.
Sanad M.F. et al. A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment // RSC Adv. 2019. Vol. 9, № 53. P. 31021–31029.
Selim M.E., Hendi A.A. Gold Nanoparticles Induce Apoptosis in MCF-7 Human Breast Cancer Cells // Asian Pac. J. Cancer Prev. 2012. Vol. 13, № 4. P. 1617–1620.
Siddiqui Z. et al. Cancer Stem Cells Niche Regulation Within the Tumor Microenvironment // Curr. Tissue Microenviron. Rep. 2024. Vol. 5. P. 25–37.
Simstein R. et al. Apoptosis, Chemoresistance, and Breast Cancer: Insights From the MCF-7 Cell Model System // Exp. Biol. Med. 2003. Vol. 228, № 9. P. 995–1003.
Sindhu K. et al. Synthesis and characterisation of morin reduced gold nanoparticles and its cytotoxicity in MCF-7 cells // Chem. Biol. Interact. 2014. Vol. 224. P. 78–88.
Soule H.D. et al. A Human Cell Line From a Pleural Effusion Derived From a Breast Carcinoma 2 // JNCI J. Natl. Cancer Inst. 1973. Vol. 51, № 5. P. 1409–1416.
Standing D., Dandawate P., Anant S. Prolactin receptor signaling: A novel target for cancer treatment - Exploring anti-PRLR signaling strategies // Front. Endocrinol. 2023. Vol. 13. P. 1–17.
Sui̇çmez M., Namalir G., Özdi̇ L.H. In Vitro Evaluation of Cytotoxic and Antitumor Activities of The Tamoxifen and Doxorubicin Combination on MCF-7 and BT-474 Breast Cancer Cell Lines // Iğdır Üniversitesi Fen Bilim. Enstitüsü Derg. 2023. Vol. 13, № 4. P. 2997–3006.
Tsai C. et al. Integrins and Actions of Androgen in Breast Cancer // Cells. 2023. Vol. 12, № 17. Art. 2126.
Tu X. et al. PEGylated carbon nanoparticles for efficient in vitro photothermal cancer therapy // J. Mater. Chem. B. 2014. Vol. 2, № 15. P. 2184–2192.
Vella V. et al. Microenvironmental Determinants of Breast Cancer Metastasis: Focus on the Crucial Interplay Between Estrogen and Insulin/Insulin-Like Growth Factor Signaling // Front. Cell Dev. Biol. 2020. Vol. 8. Art. 608412.
Wahab R. et al. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity // Colloids Surf. B Biointerfaces. 2014. Vol. 117. P. 267–276.
Yoshimura T., Li C., Matsukawa A. The chemokine monocyte chemoattractant protein-1/CCL2 is a promoter of breast cancer metastasis // Cell. Mol. Immunol. 2023. Vol. 20, № 7. P. 714–738.
Yu Y. et al. The anti-cancer activity and potential clinical application of rice bran extracts and fermentation products // RSC Adv. 2019. Vol. 9, № 31. P. 18060–18069.
Zadeh F.A. et al. Cytotoxicity evaluation of environmentally friendly synthesis Copper/Zinc bimetallic nanoparticles on MCF-7 cancer cells // Rendiconti Lincei Sci. Fis. E Nat. 2022. Vol. 33, № 2. P. 441–447.
Zhang L. et al. Gene regulation with carbon-based siRNA conjugates for cancer therapy // Biomaterials. 2016. Vol. 104. P. 269–278.
Zhang Y. et al. Effects of carbon nanoparticles-epirubicin suspension on cell proliferation and apoptosis in breast cancer MCF-7 cells // Journal of Endocrine Surgery. 2017.