The MCF-7 cell line: characteristics and interaction with nanomaterials of different structures

Main Article Content

Maria D. Dolgikh
Svetlana A. Zamorina

Abstract

This article provides a comprehensive overview of the MCF-7 breast cancer cell line, an epithelial-like adhesive cell line derived from the adenocarcinoma of breast ducts of a 69-year-old woman in the United States. It explores the historical context of its acquisition, the challenges encountered by researchers, its morphological characteristics, expression of intracellular and surface markers, genetic traits, and its wide-ranging applications in biomedical research, including drug testing, elucidation of cell biology, exploration of factors influencing cellular behavior, and the development of novel strategies for combating breast cancer. The MCF-7 cell line serves as a robust model for investigating various parameters such as cytotoxicity, functional dynamics, proliferation rates, and secretion activities when interacting with nanoparticles of diverse compositions, including metallic, non-metallic, organic, and their potential combinations. Notably, this article offers an in-depth analysis of the interactions between carbon nanomaterials and MCF-7 cells. Information for this article was gathered from scientific publication databases such as Google Scholar, CyberLeninka, PubMed, as well as from authoritative sources including NCBI, ATCC, the Russian Collection of Vertebrate Cell Cultures, and Cytion. The search encompassed publications issued from 1973 to March 2024.

Article Details

How to Cite
Dolgikh М. Д., & Zamorina С. А. (2024). The MCF-7 cell line: characteristics and interaction with nanomaterials of different structures. Bulletin of Perm University. Biology, (2), 231–247. https://doi.org/10.17072/1994-9952-2024-2-231-247
Section
Иммунология
Author Biographies

Maria D. Dolgikh, Perm State University, Perm, Russia

Bachelor student of biology

Svetlana A. Zamorina, ПГНИУ; Институт экологии и генетики микроорганизмов УрО РАН

PhD, Biology doctor, leader researcher of the Laboratory of Cellular Immunology and Nanobiotechnology, professor of the Department of microbiology and immunology

References

Комарова Л.Н., Мельникова А.А., Балдов Д.А. Исследование комбинированного действия ионизирующего излучения и доксорубицина на клетках аденокарциномы молочной железы человека линии MCF-7 // Научные междисциплинарные исследования: материалы XIII Междунар. науч.-практ. конф. / под ред. Н.В. Емельянова. М.: КДУ, Добросвет, 2021. С. 14–21.

Ляпун И.Н. Биологические аспекты безопасности клеточных культур in vitro // Молекулярная генетика, микробиология и вирусология. 2021. Т. 39, № 3. С. 3–9.

Межевова И.В., Ситковская А.О., Кит О.И. Первичные культуры опухолевых клеток: современные методы получения и поддержания in vitro// Южно-Российский онкологический журнал. 2020. Т. 1, № 3. С. 36–49.

Abed A.S., Mishaal Mohammed A., Khalaf Y.H. Novel photothermal therapy using platinum nanoparticles in synergy with near-infrared radiation (NIR) against human breast cancer MCF-7 cell line // Results Chem. 2022. Vol. 4, № 1-2. Art. 100591.

Adil S.F. et al. Enhanced Apoptosis by Functionalized Highly Reduced Graphene Oxide and Gold Nanocomposites in MCF-7 Breast Cancer Cells // ACS Omega. 2021. Vol. 6, № 23. P. 15147–15155.

Aghapour F. et al. Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines // Biochem. Biophys. Res. Commun. 2018. Vol. 500, № 4. P. 860–865.

Ahamed M. et al. Copper ferrite nanoparticle-induced cytotoxicity and oxidative stress in human breast cancer MCF-7 cells // Colloids Surf. B Biointerfaces. 2016. Vol. 142. P. 46–54.

Aiyer S., et al. Fluorescent carbon nanodots for targeted in vitro cancer cell imaging // Appl. Mater. Today. 2016. Vol. 4. P. 71–77.

Alsaedi I.I.J. et al. Graphene nanoparticles induces apoptosis in MCF-7 cells through mitochondrial damage and NF-KB pathway // Mater. Res. Express. 2019. Vol. 6, № 9. Art. 095413.

American Type Culture Collection [Электронный ресурс]. URL: https://www.atcc.org/products/htb-22 (дата обращения: 15.11.2023).

Arasu M.V. et al. Synthesis and characterization of ZnO nanoflakes anchored carbon nanoplates for antioxidant and anticancer activity in MCF7 cell lines // Mater. Sci.  Eng. C. Synthesized on Cellulose Nanocrystals // Adv. Opt. Mater. 2019. Vol. 8, № 4. P. 536–540. doi: 10.1016/j.msec.2019.04.068.

Chekini M. et al. Chiral Carbon Dots Synthesized on Cellulose Nanocrystals // Adv. Opt. Mater. 2019. Vol. 8, № 4. Art. 1901911.

Comşa Ş., Cîmpean A.M., Raica M. The Story of MCF-7 Breast Cancer Cell Line: 40 years of Experience in Research // Anticancer Res. 2015. P. 3147–3154.

Cytion: human and animal cell bank [Электронный ресурс]. URL: https://cytion.com/Knowledge-Hub/Cell-Line-Insights/mcf-7-cells/ (дата обращения: 18.12.2023).

Daniluk K. et al. Use of Selected Carbon Nanoparticles as Melittin Carriers for MCF-7 and MDA-MB-231 Human Breast Cancer Cells // Materials. 2019. Vol. 13. № 1. Art. 90.

Desai D., Shende P. Strategic Aspects of NPY-Based Monoclonal Antibodies for Diagnosis and Treatment of Breast Cancer // Curr. Protein Pept. Sci. 2020. Vol. 21, № 11. P. 1097–1102.

Dong K. et al. Cinnamaldehyde and Doxorubicin Co-Loaded Graphene Oxide Wrapped Mesoporous Silica Nanoparticles for Enhanced MCF-7 Cell Apoptosis // Int. J. Nanomedicine. 2020. Vol. 15. P. 10285–10304.

Franco-Molina M.A. et al. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells // J. Exp. Clin. Cancer Res. 2010. Vol. 29, № 1. Art. 148.

Gándola Y.B. et al. Mitogenic Effects of Phosphatidylcholine Nanoparticles on MCF-7 Breast Cancer Cells // BioMed Res. Int. 2014. Vol. 2014. P. 1–13. doi: 10.1155/2014/687037.

Garriga R. et al. Toxicity of Carbon Nanomaterials and Their Potential Application as Drug Delivery Systems: In Vitro Studies in Caco-2 and MCF-7 Cell Lines // Nanomaterials. 2020. Vol 10, № 8. Art. 1617.

Gu J. et al. Hydrophilic mesoporous carbon nanoparticles as carriers for sustained release of hydrophobic anti-cancer drugs // Chem Commun. 2011. Vol. 47, № 7. P. 2101–2103.

Hart V. et al. HER2-PI9 and HER2-I12: two novel and functionally active splice variants of the oncogene HER2 in breast cancer // J. Cancer Res. Clin. Oncol. 2021. Vol. 147, № 10. P. 2893–2912.

Hegde S.M. et al. Interplay of nuclear receptors (ER, PR, and GR) and their steroid hormones in MCF-7 cells // Mol. Cell. Biochem. 2016. Vol. 422, № 1–2. P. 109–120.

Jafarinejad-Farsangi S. et al. Curcumin loaded on graphene nanosheets induced cell death in mammospheres from MCF-7 and primary breast tumor cells // Biomed. Mater. 2021. Vol. 16, № 4. Art. 045040.

Jang S.J. et al. In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells // Mater. Sci. Eng. C. 2016. Vol. 68. P. 430–435.

Jiang P. et al. Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF-7 cells // Appl. Microbiol. Biotechnol. 2013. Vol. 97, № 3. P. 1051–1062.

Kajani A.A. et al. Carbon dot incorporated mesoporous silica nanoparticles for targeted cancer therapy and fluorescence imaging // RSC Adv. 2023. Vol. 13, № 14. P. 9491–9500.

Karmakar A. et al. Radio-frequency induced in vitro thermal ablation of cancer cells by EGF functionalized carbon-coated magnetic nanoparticles // J. Mater. Chem. 2011. Vol. 21, № 34. P. 12761–12769.

Katuwavila N. et al. Chitosan-Alginate Nanoparticle System Efficiently Delivers Doxorubicin to MCF-7 Cells // J. Nanomater. 2016. Vol. 2016, № 1. P. 1–12. DOI: 10.1155/2016/3178904.

Kavitha G. et al. Apoptotic efficacy of biogenic argentum nanoparticles embedded by activated carbon on MCF-7 human breast cancer cell lines // Inorg. Chem. Commun. 2022. Vol. 144, № 5. Art. 109689.

Kern F.G. et al. Transfected MCF-7 cells as a model for breast cancer progression // Breast Cancer Res. Treat. 1994. Vol. 31, № 2–3. P. 153–165.

Khan M.M., Filipczak N., Torchilin V.P. Cell penetrating peptides: A versatile vector for co-delivery of drug and genes in cancer // J. Controlled Release. 2021. Vol. 330. P. 1220–1228.

Kumar S.S.D. et al. Synthesis and characterization of curcumin loaded polymer/lipid based nanoparticles and evaluation of their antitumor effects on MCF-7 cells // Biochim. Biophys. Acta BBA - Gen. Subj. 2014. Vol. 1840, № 6. P. 1913–1922.

Lee A.V., Oesterreich S., Davidson N.E. MCF-7 Cells--Changing the Course of Breast Cancer Research and Care for 45 Years // JNCI J. Natl. Cancer Inst. 2015. Vol. 107, № 7. Art. djv073.

Li J. et al. Dose-Related Alterations of Carbon Nanoparticles in Mammalian Cells Detected Using Biospectroscopy: Potential for Real-World Effects // Environ. Sci. Technol. 2013. Vol. 47, № 17. P. 10005–10011.

Liu X. et al. Biocompatible multi-walled carbon nanotube-chitosan–folic acid nanoparticle hybrids as GFP gene delivery materials // Colloids Surf. B Biointerfaces. 2013. Vol. 111. P. 224–231.

Llames S. et al. Feeder Layer Cell Actions and Applications // Tissue Eng. Part B Rev. 2015. Vol. 21, № 4. P. 345–353.

Meacham W.D. et al. Sphingolipids as Determinants of Apoptosis and Chemoresistance in the MCF-7 Cell Model System // Exp. Biol. Med. 2009. Vol. 234, № 11. P. 1253–1263.

Meena R. et al. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7) // J. Nanoparticle Res. 2012. Vol. 14, № 2. Art. 712.

Mirabdollahi M., Haghjooy Javanmard S., Sadeghi-Aliabadi H. In Vitro Assessment of Cytokine Expression Profile of MCF-7 Cells inResponse to hWJ-MSCs Secretome // Adv. Pharm. Bull. 2019. Vol. 9, № 4. P. 649–654.

Misra S.K. et al. Next Generation Carbon Nanoparticles for Efficient Gene Therapy // Mol. Pharm. 2015. Vol. 12, № 2. P. 375–385.

Mohammadi H. et al. Evaluation of synthesized platinum nanoparticles on the MCF-7 and HepG-2 cancer cell lines // Int. Nano Lett. 2013. Vol. 3, № 1. Art. 28.

Mohammed S.A.A. et al. Copper Oxide Nanoparticle-Decorated Carbon Nanoparticle Composite Colloidal Preparation through Laser Ablation for Antimicrobial and Antiproliferative Actions against Breast Cancer Cell Line, MCF-7 // BioMed Res. Int. 2022. Vol. 2022. P. 1–13.

Murawala P. et al. In situ synthesized BSA capped gold nanoparticles: Effective carrier of anticancer drug Methotrexate to MCF-7 breast cancer cells // Mater. Sci. Eng. C. 2014. Vol. 34. P. 158–167.

Murugan K. et al. Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7) // Parasitol. Res. 2016. Vol. 115, № 3. P. 1085–1096.

National Center of Biotechnology Information [Электронный ресурс]. URL: https://www.ncbi.nlm.nih.gov/gene (дата обращения: 13.02.2024).

Nayak D. et al. Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: Characterization and cytotoxic effect on MCF-7 breast cancer cell lines // J. Colloid Interface Sci. 2016. Vol. 470 (May). P. 142–152.

Nivethaa E.A.K. et al. A comparative study of 5-Fluorouracil release from chitosan/silver and chitosan/silver/MWCNT nanocomposites and their cytotoxicity towards MCF-7 // Mater. Sci. Eng. C. 2016. Vol. 66. P. 244–250.

Osborne C.K., Hobbs K., Trent J.M. Biological differences among MCF-7 human breast cancer cell lines from different laboratories // Breast Cancer Res. Treat. 1987. Vol. 9, № 2. P. 111–121.

Pai С. et al. Carbon Nanotube-Mediated Photothermal Disruption of Endosomes/Lysosomes Reverses Doxorubicin Resistance in MCF-7/ADR Cells // J. Biomed. Nanotechnol. 2016. Vol. 12, № 4. P. 619–629.

Perou C.M. et al. Molecular portraits of human breast tumours // Nature. 2000. Vol. 406, № 6797. P. 747–752.

Şahin B. et al. Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line // Colloids Surf. B Biointerfaces. 2018. Vol. 163. P. 119–124.

Sanad M.F. et al. A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment // RSC Adv. 2019. Vol. 9, № 53. P. 31021–31029.

Selim M.E., Hendi A.A. Gold Nanoparticles Induce Apoptosis in MCF-7 Human Breast Cancer Cells // Asian Pac. J. Cancer Prev. 2012. Vol. 13, № 4. P. 1617–1620.

Siddiqui Z. et al. Cancer Stem Cells Niche Regulation Within the Tumor Microenvironment // Curr. Tissue Microenviron. Rep. 2024. Vol. 5. P. 25–37.

Simstein R. et al. Apoptosis, Chemoresistance, and Breast Cancer: Insights From the MCF-7 Cell Model System // Exp. Biol. Med. 2003. Vol. 228, № 9. P. 995–1003.

Sindhu K. et al. Synthesis and characterisation of morin reduced gold nanoparticles and its cytotoxicity in MCF-7 cells // Chem. Biol. Interact. 2014. Vol. 224. P. 78–88.

Soule H.D. et al. A Human Cell Line From a Pleural Effusion Derived From a Breast Carcinoma 2 // JNCI J. Natl. Cancer Inst. 1973. Vol. 51, № 5. P. 1409–1416.

Standing D., Dandawate P., Anant S. Prolactin receptor signaling: A novel target for cancer treatment - Exploring anti-PRLR signaling strategies // Front. Endocrinol. 2023. Vol. 13. P. 1–17.

Sui̇çmez M., Namalir G., Özdi̇ L.H. In Vitro Evaluation of Cytotoxic and Antitumor Activities of The Tamoxifen and Doxorubicin Combination on MCF-7 and BT-474 Breast Cancer Cell Lines // Iğdır Üniversitesi Fen Bilim. Enstitüsü Derg. 2023. Vol. 13, № 4. P. 2997–3006.

Tsai C. et al. Integrins and Actions of Androgen in Breast Cancer // Cells. 2023. Vol. 12, № 17. Art. 2126.

Tu X. et al. PEGylated carbon nanoparticles for efficient in vitro photothermal cancer therapy // J. Mater. Chem. B. 2014. Vol. 2, № 15. P. 2184–2192.

Vella V. et al. Microenvironmental Determinants of Breast Cancer Metastasis: Focus on the Crucial Interplay Between Estrogen and Insulin/Insulin-Like Growth Factor Signaling // Front. Cell Dev. Biol. 2020. Vol. 8. Art. 608412.

Wahab R. et al. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity // Colloids Surf. B Biointerfaces. 2014. Vol. 117. P. 267–276.

Yoshimura T., Li C., Matsukawa A. The chemokine monocyte chemoattractant protein-1/CCL2 is a promoter of breast cancer metastasis // Cell. Mol. Immunol. 2023. Vol. 20, № 7. P. 714–738.

Yu Y. et al. The anti-cancer activity and potential clinical application of rice bran extracts and fermentation products // RSC Adv. 2019. Vol. 9, № 31. P. 18060–18069.

Zadeh F.A. et al. Cytotoxicity evaluation of environmentally friendly synthesis Copper/Zinc bimetallic nanoparticles on MCF-7 cancer cells // Rendiconti Lincei Sci. Fis. E Nat. 2022. Vol. 33, № 2. P. 441–447.

Zhang L. et al. Gene regulation with carbon-based siRNA conjugates for cancer therapy // Biomaterials. 2016. Vol. 104. P. 269–278.

Zhang Y. et al. Effects of carbon nanoparticles-epirubicin suspension on cell proliferation and apoptosis in breast cancer MCF-7 cells // Journal of Endocrine Surgery. 2017.