АКТИВНОСТЬ ОСНОВНЫХ ФЕРМЕНТОВ СИНТЕЗА ПОЛИАМИНОВ В ПРИРОДНЫХ ИЗОЛЯТАХ ESCHERICHIA COLI
##plugins.themes.bootstrap3.article.main##
Аннотация
##plugins.themes.bootstrap3.article.details##
Лицензионный договор на право использования научного произведения в научных журналах, учредителем которых является Пермский государственный национальный исследовательский университет
Текст Договора размещен на сайте Пермского государственного национального исследовательского университета http://www.psu.ru/, а также его можно получить по электронной почте в «Отделе научных периодических и продолжающихся изданий ПГНИУ»: YakshnaN@psu.ru или в редакциях научных журналов ПГНИУ.
Библиографические ссылки
Шумков М.С. и др. Изменение экспрессии ldcC Escherichia coli как фактор адаптации к анти-биотикам // Вестник Пермского университета. Сер. Биология. 2010. Вып. 1. С. 36–40.
Applebaum D., Dunlap J., Morris D. Comparison of the biosynthetic and biodegradative ornithine de-carboxylases of Escherichia coli // Biochemistry. 1977. Vol. 16, № 8. P. 1580–1584.
Auger E., Bennett G. Regulation of lysine decarboxylase activity in Escherichia coli K-12 // Archives of Microbiology. 1989. Vol. 151, № 5. P. 466–468.
Blethen S., Boeker E., Snell E. Arginine decarboxylase from Escherichia coli. I. Purification and specifici-ty for substrates and coenzyme // Journal of Bio-logical Chemistry. 1968. Vol. 243, № 8. P. 1671–1677.
Bowman W., Tabor C., Tabor H. Spermidine biosyn-thesis. Purification and properties of propylamine transferase from Escherichia coli // Journal of Biological Chemistry.1973. Vol. 248, № 7. P. 2480–2486.
Buch J., Boyle S. Biosynthetic arginine decarboxylase in Escherichia coli is synthesized as a precursor and located in the cell envelope // Journal of Bacteriology. 1985. Vol. 163, № 2. P. 522–527.
Castanie-Cornet M. et al. Control of acid resistance in Escherichia coli // Journal of Bacteriology. 1999. Vol. 181. P. 3525–3535.
Chattopadhyay M., Chen W., Tabor H. Escherichia coli glutathionylspermidine synthetase/amidase: phylogeny and effect on regulation of gene expression // FEMS Microbiology Letters. 2013. Vol. 338, № 2. P. 132–140.
Höltta E., Jänne J., Pispa J. Ornitine decarboxylase from Escherichia coli: stimulation of the enzyme activity by nucleotides // Biochemical and Bio-physical Research Communications. 1972. Vol. 47. P. 1165–1171.
Igarashi K., Kashiwagi K. Modulation of cellular function by polyamines // International Journal of Biochemistry and Cell Biology. 2010. Vol. 42, № 1. P. 39–51.
Kanjee U. et al. The enzymatic activities of the Esche-richia coli basic aliphatic amino acid decarbox-ylases exhibit a pH zone of inhibition // Biochemi-stry. 2011. Vol. 50, № 43. P. 9388–9398.
Kanjee U., Houry W.A. Mechanisms of acid resistance in Escherichia coli // Annual Review of Microbi-ology. 2013. Vol. 67. P. 65–81.
Kikuchi Y., Kurahashi O., Nagano T. RpoS-dependent expression of the second lysine decarboxylase gene in Escherichia coli // Bioscience, Biotechnology, and Biochemistry. 1997. Vol. 62, № 6. P. 1267–1270.
Kim J., Choi S., Lee J. Lysine decarboxylase expres-sion by Vibrio vulnificus is induced by SoxR in re-sponse to superoxide stress // Journal of Bacteriol-ogy. 2006. Vol. 188, № 24. P. 8586–8592.
Kusano T. et al. Polyamines: essential factors for growth and survival // Planta. 2008. Vol. 228, № 3. P. 367–381.
Kyriakidis D., Tiligada E. Signal transduction and adaptive regulation through bacterial two-component systems: the Escherichia coli AtoSC paradigm // Amino Acids. 2009. Vol. 37, № 3. P. 443–458.
Lemonnier M., Lane D. Expression of the second ly-sine decarboxylase gene of Escherichia coli // Mi-crobiology. 1998. Vol. 144, № 3. P. 751–760.
Markham G. et al. S-adenosylmethionine synthetase from Eschericgia coli // Journal of Biological Chemistry. 1980. Vol. 255. P. 9082–9092.
Meng S., Bennett G. Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH // Journal of Bacteriology. 1992. Vol. 174, № 8. P. 2659–2669.
Moeller V. Simplified tests for some amino acid decarboxylases and for the arginine dihydrolase sys-tem // Acta Pathologica et Microbiologica Scandinavica. 1955. Vol. 36. P. 158–172.
Morris D., Fillingame R. Regulation of amino acid decarboxylation // Annual Review of Biochemis-try. 1974. Vol. 43. P. 303–321.
Pegg A. Functions of polyamines in mammals // Journal of Biological Chemistry. 2016. Vol. 291, № 29. P. 14904–14912.
Pomposiello P., Bennik M., Demple B. Genomewide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate // Journal of Bacteriology. 2001. Vol. 183, № 13. P. 3890–3902.
Richard H., Foster J. Escherichia coli glutamate- and arginine-dependent acid resistance systems in-crease internal pH and reverse transmembrane po-tential // Journal of Bacteriology. 2004. Vol. 186, № 18. P. 6032–6041.
Sabo D. et al. Purification and physical properties of inducible Escherichia coli lysine decarboxylase // Biochemistry. 1974. Vol. 13. P. 662–670.
Tabor C.W., Tabor H. Polyamines in microorganisms // Microbiological Reviews. 1985. Vol. 49. P. 81–99.
Wu W., Morris D. Biosynthetic arginine decarboxylase from Escherichia coli. Purification and properties // Journal of Biological Chemistry. 1973. Vol. 248, № 5. P. 1687–1695.
Wendisch V. Microbial production of amino acid-related compounds // Advances in Biochemical Engineering/Biotechnology. 2017. Vol. 159. P. 255–269.
Wertheimer S., Leifer Z. Putrescine and spermidine sensitivity of lysine decarboxylase in Escherichia coli: evidence for a constitutive enzyme and its mode of regulation // Biochemical and Biophysical Research Communications. 1983. Vol. 114, № 2. P. 882–888.
Wright J., Boyle S. Negative control of ornithine de-carboxylase and arginine decarboxylase by adenosine-3,5-monophosphate in E. coli // Molecular and General Genetics. 1982. Vol. 186. P. 482–487.