Models of Cardiac Artery Segmentation From Coronary Angiographic Images

Authors

  • Vladislav A. Bochkarev Perm State Univesity
  • Alexander A. Usynin Perm State Univesity
  • Alexandr D. Osipov Perm State Univesity
  • Mikhail R. Aukhadiev Perm State Univesity
  • Roman V. Sharov Perm State Univesity
  • Marina A. Barulina Perm State Univesity

DOI:

https://doi.org/10.17072/1993-0550-2025-2-65-87

Keywords:

cardiovascular diseases, coronary angiography, coronary vessel segmentation, image preprocessing, U-Net, attention mechanisms, deep learning

Abstract

Cardiovascular diseases remain the leading cause of death. Mortality can be reduced and diagnostic accuracy can be improved by developing artificial intelligence-based solutions. The most important task here is segmentation of cardiac arteries. Accurate segmentation of coronary vessels on angiographic images is critical for detecting stenosis and planning interventional procedures. However, automated segmentation methods face a number of problems associated with difficulty in recognizing cardiac arteries: uneven distribution of contrast agent, motion artifacts, and superposition of shadows from anatomical structures. This paper presents a vessel segmentation model based on a modified U-Net architecture, including residual blocks and attention mechanisms (SCSE) with pre-training of the encoder on an artificial dataset for extracting vascular features. Particular attention is paid to the model's resistance to noise, a key problem of angiographic data that many existing methods cannot cope with. The model was trained on a mixed dataset of 1285 2D coro-nary angiogram images annotated by experts. The proposed approach achieved an IoU of 0.54 and an F1-score of 0.79 on the test set, demonstrating robustness to noise and artifacts. Additional post-processing with adaptive filtering improved the quality of binary masks, eliminating false positives from catheters and metal objects. External evaluation on 50 images from an independent clinical dataset showed an IoU of 0.50 and an F1-score of 0.75, which outperforms baseline segmentation methods such as the classical U-Net (IoU 0.42). The results highlight the effectiveness of the proposed model for vessel seg-mentation in real-world angiograms and demonstrate the potential of the approach as a basis for subsequent 3D reconstruction of the vascular network, which may improve diagnosis and treatment planning for coronary artery stenosis.

References

Roth G. A., Mensah G. A., Johnson C. O., Addolorato G., Ammirati E., Baddour L. M., Barasa A., Bikbov B., et al. Global burden of cardiovascular diseases and risk factors, 1990–2019 // Journal of the American College of Cardiology. 2020. Vol. 76. P. 2982–3021. DOI: 10.1016/j.jacc.2020.11.010.

World Health Organization. Global report on hypertension: the race against a silent killer. Geneva, Switzerland: WHO, 2024. URL:https://iris.who.int/bitstream/handle/10665/376869/9789240094703-eng.pdf (дата обращения: 23.01.2025).

Libby P., Theroux P., Bonow R. O., Braunwald E., et al. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine. 11th ed. Philadelphia, PA: Elsevier, 2021.

Serruys P. W., Morice M. C., Kappetein A. P., et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease // New England Journal of Medicine. 2009. Vol. 360. P. 961–972. DOI: 10.1056/NEJMoa0804626.

Scanlon P. J., Faxon D. P., Audet A. M., et al. ACC/AHA guidelines for coronary angiography // Journal of the American College of Cardiology. 1999. Vol. 33. P. 1756–1824. DOI:10.1016/S0735-1097(99)00126-6.

Sarwal A., Dhawan A. P. Three dimensional reconstruction of coronary arteries from two views // Computers in Biology and Medicine. 1993. Vol. 23, No. 1. P. 25–39. DOI: 10.1016/S0169-2607(00)00116-4.

Ravandi B., Ravandi A. Network-based approach for modeling and analyzing coronary angiography // Complex Networks XI: Proceedings of the 11th Conference on Complex Networks CompleNet 2020. Springer, 2020. DOI: 10.1007/978-3-030-40943-2_15.

Shen D., Wu G., Suk H. I. Deep learning in medical image analysis // Annual Review of Biomedical Engineering. 2017. Vol. 19. P. 221–248. DOI: 10.1146/annurev-bioeng-071516-044442.

Avram R., Olgin J. E., Tison G. H., et al. CathAI: fully automated coronary angiography interpretation and stenosis estimation // NPJ Digital Medicine. 2023. Vol. 6. Article number: 147. DOI: 10.1038/s41746-023-00880-1.

Ronneberger O., Fischer P., Brox T. U-Net: convolutional networks for biomedical image segmentation // arXiv preprint arXiv:1505.04597. 2015. DOI: 10.48550/arXiv.1505.04597 (дата обращения: 15.03.2025).

He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. P. 770–778. DOI: 10.1109/CVPR.2016.90.

Guha Roy A., Navab N., Wachinger C. Concurrent spatial and channel squeeze & excitation in fully convolutional networks // arXiv preprint arXiv:1803.02579. 2018. DOI:10.48550/arXiv.1803.02579 (дата обращения: 13.03.2025).

Label Studio. Label Studio: open source data labeling platform. 2023. URL: https://labelstud.io (дата обращения: 10.02.2025).

Zhou Z., Shin J., Zhang L., et al. Models Genesis: generic autodidactic models for 3D medical image analysis // In: MICCAI. 2019. P. 3–13. DOI: 10.1007/978-3-030-32251-9_42.

Comaniciu D., Meer P. Mean shift: a robust approach toward feature space analysis // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. Vol. 24, No. 5. P. 603–619. DOI: 10.1109/34.1000236.

Canny J. A computational approach to edge detection // IEEE Transactions on Pattern Analysis and Machine Intelligence. 1986. Vol. 8, No. 6. P. 679–698. DOI: 10.1109/TPAMI.1986.4767851.

Sobel I. An isotropic 3× 3 image gradient operator. Presentation at Stanford Artificial Intelligence Project (SAIL). 1968.

Gonzalez R.C., Woods R.E. Digital Image Processing. 4th ed. London: Pearson, 2018.

Zhou Z., Siddiquee M. M. R., Tajbakhsh N., Liang J. UNet++: a nested U-Net architecture for medical image segmentation // arXiv preprint arXiv:1807.10165. 2018. DOI: 10.1007/978-3-030-00889-5_1.

Chen L.C., Zhu Y., Papandreou G., Schroff F., Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation // Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. P. 801–818. DOI: 10.48550/arXiv.1802.02611 (дата обращения: 21.03.2025).

Yu F., Koltun V. Multi-scale context aggregation by dilated convolutions // arXiv preprint arXiv:1511.07122. 2015.DOI: 0.48550/arXiv.1511.07122 (дата обращения: 25.03.2025).

Isensee F., Jaeger P.F., Kohl S. A.A., et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation // Nature Methods. 2021. Vol. 18. P. 203–211. DOI: 10.1038/s41592-020-01008-z.

Loshchilov I., Hutter F. Decoupled weight decay regularization // arXiv preprint arXiv:1711.05101. 2017. DOI: 10.48550/arXiv.1711.05101 (дата обращения: 29.03.2025).

Savitzky A., Golay M. J. E. Smoothing and differentiation of data by simplified least squares procedures // Analytical Chemistry. 1964. Vol. 36, No. 8. P. 1627–1639. DOI: 10.1021/ac60214a047.

Rezatofighi H., Tsoi N., Gwak J., et al. Generalized intersection over union: a metric and a loss for bounding box regression // arXiv preprint arXiv:1902.09630. 2019. DOI: 10.1109/CVPR.2019.00075.

Zeng Y., Liu H., Hu J., Zhao Z., She Q. Pretrained subtraction and segmentation model for coronary angiograms // Scientific Reports. 2024. Vol. 14. Article number: 71063. DOI: 10.1038/s41598-024-71063-5.

Litjens G., Kooi T., Bejnordi B. E., Setio A. A. A., Ciompi F., Ghafoorian M., van der Laak J. A. W. M., van Ginneken B., Sánchez C. I. A survey on deep learning in medical image analysis // Medical Image Analysis. 2017. Vol. 42. P. 60–88. DOI: 10.1016/j.media.2017.07.005.

Oktay O., Schlemper J., Folgoc L. L., Lee M., Heinrich M., Misawa K., Mori K., McDonagh S., Hammerla N. Y., Kainz B., Glocker B., Rueckert D. Attention U-Net: learning where to look for the pancreas // arXiv preprint arXiv:1804.03999. 2018. DOI:10.48550/arXiv.1804.03999 (дата обращения: 05.04.2025).

Çiçek Ö., Abdulkadir A., Lienkamp S.S., Brox T., Ronneberger O. 3D U-Net: learning dense volumetric segmentation from sparse annotation // In: Medical Image Computing and Computer-Assisted Intervention (MICCAI). 2016. P. 424–432. DOI: 10.1007/978-3-319-46723-8_49.

Published

2025-07-15

How to Cite

Bochkarev В. А., Usynin А. А., Osipov А. Д., Aukhadiev М. Р., Sharov Р. В., & Barulina М. А. (2025). Models of Cardiac Artery Segmentation From Coronary Angiographic Images. BULLETIN OF PERM UNIVERSITY. MATHEMATICS. MECHANICS. COMPUTER SCIENCE, (2 (69), 65–87. https://doi.org/10.17072/1993-0550-2025-2-65-87