Chatbot as a psychological support tool: research review

Psychology

Authors

  • Inga F. Freimanis Perm State University, 15, Bukirev st., Perm, 614990, Russia

DOI:

https://doi.org/10.17072/2078-7898/2024-2-250-259%20

Keywords:

chatbots, artificial intelligence, dialog agent, applied psychology, psychological aid, psychological health, psychological chatbot, digital technology, programs simulating the work of a psychotherapist, ChatGPT, mobile applications

Abstract

This article is a review of theoretical research on the use of chatbots in applied psychology. It articulates the concept of a chatbot, describes the types of chatbot structure, lists the functions of this technology, and discusses its advantages and disadvantages. The paper provides some recommendations for developers concerning the design of chatbots intended for psychological support. The results of the study show that chatbots have significant possibilities for psychological support of users. Technology can act as virtual friends and assistants, help practice mindfulness, form useful habits, control and regulate emotional state, provide psychoeducation and post-rehabilitation psychological support, diagnose psychological problems. However, at this early stage, technology should not be regarded as an alternative to professional help. It is important to combine psychotherapy through chatbots with professional therapy, communication with a «real» therapist. In developing chatbots, it is important to establish the limits of the technology’s capabilities. Creators of chatbots should clearly indicate the purpose and expected limitations. In addition, technology should have features that schedule professional support and encourage users to seek professional help when needed.

Author Biography

Inga F. Freimanis , Perm State University, 15, Bukirev st., Perm, 614990, Russia

Postgraduate Student, Senior Lecturer of the Department of General and Clinical Psychology

References

Роговец А.Ю., Мазуркевич А., Суворова И.Ю., Винник М., Приходько А.А. Чат-бот как способ поддержки жертв школьной травли // Современная зарубежная психология. 2023. Т. 12, № 3. C. 103–114. DOI: https://doi.org/10.17759/ jmfp.2023120310

Abd-Alrazaq A.A., Alajlani M., Alalwan A.A., Bewick B.M., Gardner P., Househ M. An overview of the features of chatbots in mental health: a scoping review // International Journal of Medical Informatics. 2019. Vol. 132. URL: https://pubmed.ncbi.nlm.nih.gov/ 31622850/ (accessed: 24.04.2024). DOI: https://doi.org/10.1016/j.ijmedinf.2019.103978

Adamopoulou E., Moussiades L. An overview of chatbot technology // Proceedings of the 16th International Conference on Artificial Intelligence Applications and Innovations, AIAI ‘20 (Neos Marmaras, Greece, June 5–7, 2020). Cham, CH: Springer, 2020. P. 373–383. URL: https://link.springer.com/chapter/ 10.1007/978-3-030-49186-4_31 (accessed: 26.04.2024).

Ahmed A., Ali N., Aziz S., Abd-Alrazaq A.A. et al. A review of mobile chatbot apps for anxiety and depression and their self-care features // Computer Methods and Programs in Biomedicine Update. 2021. Vol. 1. URL: https://www.sciencedirect.com/science/ article/pii/S2666990021000112?via%3Dihub (accessed: 23.04.2024). DOI: https://doi.org/10.1016/ j.cmpbup.2021.100012

Asensio-Cuesta S., Blanes-Selva V., Conejero J.A., Frigola A. et al. A user-centered chatbot (Wakamola) to collect linked data in population networks to support studies of overweight and obesity causes: design and pilot study // JMIR Medical Informatics. 2021. Vol. 9, iss. 4. URL: https://medinform.jmir.org/2021/4/e17503/PDF (accessed: 23.04.2024). DOI: https://doi.org/ 10.2196/17503

Bates M. Health care chatbots are here to help // IEEE Pulse. 2019. Vol. 10, iss. 3. P. 12–14. DOI: https://doi.org/10.1109/mpuls.2019.2911816

Battineni G., Chintalapudi N., Amenta F. AI chatbot design during an epidemic like the novel coronavirus // Healthcare (Basel). 2020. Vol. 8, iss. 2. URL: https://www.mdpi.com/2227-9032/8/2/154/ pdf?version=1591947503 (accessed: 26.04.2024). DOI: https://doi.org/10.3390/healthcare8020154

Denecke K., Vaaheesan S., Arulnathan A. A mental health chatbot for regulating emotions (SERMO) — concept and usability test // IEEE Transactions on Emerging Topics in Computing. 2021. Vol. 9, iss. 3. P. 1170–1182. DOI: https://doi.org/10.1109/tetc.2020.2974478 Elmasri D., Maeder A. A conversational agent for an online mental health intervention // Proceedings of the International Conference on Brain Informatics and Health, BIH ‘16 (Omaha, NE, USA, October 13– 16, 2016).

Cham, CH: Springer, 2016. P. 243–251. DOI: https://doi.org/10.1007/978-3-319-47103-7_24 Fadhil A. Can a chatbot determine my diet?: Addressing challenges of chatbot application for meal recommendation. 2018. Feb. 25, URL: https://www.researchgate.net/publication/323410718 _Can_a_Chatbot_Determine_My_Diet_Addressing_ Challenges_of_Chatbot_Application_for_Meal_ Recommendation (accessed: 26.04.2024).

Fadhil A., Schiavo G., Wang Y., Yilma B.A. The effect of emojis when interacting with conversational interface assisted health coaching system // Proceedings of the 12th EAI International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth ‘18 (New York, USA, May 21–24, 2018). N.Y.: Association for Computing Machinery, 2018. P. 378–383. DOI: https://doi.org/10.1145/ 3240925.3240965

Fitzpatrick K.K., Darcy A., Vierhile M. Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): A randomized controlled trial // JMIR Mental Health. 2017. Vol. 4, iss. 2. URL: https://mental.jmir.org/2017/ 2/e19/PDF (accessed: 26.04.2024). DOI: https://doi.org/10.2196/mental.7785

Garg Sh., Williams N.L., Ip A., Dicker A.P. Clinical integration of digital solutions in health care: an overview of the current landscape of digital technologies in cancer care // JCO Clinical Cancer Informatics. 2018. Vol. 2. URL: https://ascopubs.org/doi/ pdfdirect/10.1200/CCI.17.00159 (accessed: 28.04.2024). DOI: https://doi.org/10.1200/ cci.17.00159

Huang Ch.-Y., Yang M.-Ch., Huang Ch.-Y., Chen Y.-J., Wu M.-L., Chen K.-W. A chatbotsupported smart wireless interactive healthcare system for weight control and health promotion // Proceedings of the 2018 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM ‘18 (Bangkok, Thailand, December 16– 19, 2018). Bangkok, TH: IEEE, 2018. P. 1791–1795. DOI: https://doi.org/10.1109/ieem.2018.8607399

Inkster B., Sarda Sh., Subramanian V. An empathy-driven, conversational artificial intelligence agent (Wysa) for digital mental well-being: real-world data evaluation mixed-methods study // JMIR mHealth and uHealth. 2018. Vol. 6, iss. 11. URL: https://mhealth.jmir.org/2018/11/e12106/PDF (accessed: 25.04.2024). DOI: https://doi.org/10.2196/12106

Lee M., Ackermans S., As N. van, Chang H., Lucas E., IJsselsteijn W. Caring for Vincent: a chatbot for self-compassion // Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ‘19 (Glasgow, Scotland, UK, May 4–9, 2019). URL: https://minha-lee.github.io/files/ lee_vincent_chatbot_CHI2019.pdf (accessed: 23.04.2024). DOI: https://doi.org/10.1145/ 3290605.3300932

Martinengo L., Lum E., Car J. Evaluation of chatbot-delivered interventions for self-management of depression: content analysis // Journal of Affective Disorders. 2022. Vol. 319. P. 598–607. DOI: https://doi.org/10.1016/j.jad.2022.09.028

Pentina I., Hancock T., Xie T. Exploring relationship development with social chatbots: A mixed-method study of replica // Computers in Human Behavior. 2023. Vol. 140. URL: https://www.sciencedirect.com/science/article/abs/pi i/S0747563222004204 (accessed: 24.04.2024). DOI: https://doi.org/10.1016/j.chb.2022.107600

Valtolina S., Hu L. Charlie: a chatbot to improve the elderly quality of life and to make them more active to fight their sense of loneliness // Proceedings of the 14th Biannual Conference of the Italian SIGCHI Chapter, CHItaly ‘21 (Bolzano, Italy, July 11–13, 2021). N.Y.: Association for Computing Machinery, 2021. URL: https://dl.acm.org/doi/abs/ 10.1145/3464385.3464726 (accessed: 23.04.2024). DOI: https://doi.org/10.1145/3464385.3464726

You Y., Gui X. Self-diagnosis through AI-enabled chatbot-based symptom checkers: user experiences and design considerations // AMIA Annual Symposium Proceedings. 2021. Vol. 2021. URL: https://arxiv.org/abs/2101.04796 (accessed: 28.04.2024).

Zhang J., Oh Y.J., Lange P., Yu Zh., Fukuoka Y. Artificial intelligence chatbot behavior change model for designing artificial intelligence chatbots to promote physical activity and a healthy diet: viewpoint // Journal of Medical Internet Research. 2020. Vol. 22, iss. 9. URL: https://www.jmir.org/2020/9/e22845/ PDF (accessed: 28.04.2024). DOI: https://doi.org/ 10.2196/22845

References

Abd-Alrazaq, A.A., Alajlani, M., Alalwan, A.A., Bewick, B.M., Gardner, P. and Househ, M. (2010). An overview of the features of chatbots in mental health: a scoping review. International Journal of Medical Informatics. Vol. 132. Available at: https://pubmed.ncbi.nlm.nih.gov/31622850/ (accessed 24.04.2024). DOI: https://doi.org/10.1016/ j.ijmedinf.2019.103978

Adamopoulou, E. and Moussiades, L. (2020). An overview of chatbot technology. Proceedings of the 16th International Conference on Artificial Intelligence Applications and Innovations, AIAI ‘20 (Neos Marmaras, Greece, June 5–7, 2020). Cham, CH: Springer Publ., pp. 373–383. Available at: https://link.springer.com/chapter/10.1007/978-3-03049186-4_31 (accessed 26.04.2024).

Ahmed, A., Ali, N., Aziz, S., Abd-Alrazaq, A.A. et al. (2021). A review of mobile chatbot apps for anxiety and depression and their self-care features. Computer Methods and Programs in Biomedicine Update. Vol. 1. Available at: https://www.sciencedirect.com/science/article/pii/S26 66990021000112?via%3Dihub (accessed 23.04.2024). DOI: https://doi.org/10.1016/ j.cmpbup.2021.100012

Asensio-Cuesta, S., Blanes-Selva, V., Conejero, J.A., Frigola, A. et al. (2021). A usercentered chatbot (Wakamola) to collect linked data in population networks to support studies of overweight and obesity causes: design and pilot study. JMIR Medical Informatics. Vol. 9, iss. 4. Available at: https://medinform.jmir.org/2021/4/e17503/PDF (accessed 23.04.2024). DOI: https://doi.org/ 10.2196/17503

Bates, M. (2019). Health care chatbots are here to help. IEEE Pulse. Vol. 10, iss. 3, pp. 12–14. DOI: https://doi.org/10.1109/mpuls.2019.2911816

Battineni, G., Chintalapudi, N. and Amenta, F. (2020). AI chatbot design during an epidemic like the novel coronavirus. Healthcare (Basel). Vol. 8, iss. 2. Available at: https://www.mdpi.com/22279032/8/2/154/pdf?version=1591947503 (accessed 26.04.2024). DOI: https://doi.org/10.3390/ healthcare8020154

Denecke, K., Vaaheesan, S. and Arulnathan, A. (2021). A mental health chatbot for regulating emotions (SERMO) — concept and usability test. IEEE Transactions on Emerging Topics in Computing. Vol. 9, iss. 3, pp. 1170–1182. DOI: https://doi.org/10.1109/tetc.2020.2974478

Elmasri, D. and Maeder, A. (2016). A conversational agent for an online mental health intervention. Proceedings of the International Conference on Brain Informatics and Health, BIH ‘16 (Omaha, NE, USA, October 13–16, 2016). Cham, CH: Springer Publ., pp. 243–251. DOI: https://doi.org/10.1007/978-3319-47103-7_24

Fadhil, A. (2018). Can a chatbot determine my diet? Proceedings of the Addressing Challenges of Chatbot Application for Meal Recommendation. Feb. 25. Available at: https://www.researchgate.net/ publication/323410718_Can_a_Chatbot_Determine_ My_Diet_Addressing_Challenges_of_Chatbot_Application_for_Meal_Recommendation (accessed 26.04.2024). Fadhil, A., Schiavo, G., Wang, Y. and Yilma, B.A. (2018). The effect of emojis when interacting with conversational interface assisted health coaching system. Proceedings of the 12th EAI International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth ‘18 (New York, USA, May 21–24, 2018). New York, Association for Computing Machinery Publ., pp. 378–83. DOI: https://doi.org/10.1145/3240925.3240965

Fitzpatrick, K.K., Darcy, A. and Vierhile, M. (2017). Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): A randomized controlled trial. JMIR Mental Health. Vol. 4, iss. 2. Available at: https://mental.jmir.org/2017/2/e19/PDF (accessed 26.04.2024). DOI: https://doi.org/10.2196/ mental.7785 Garg, S., Williams, N.L., Ip, A. and Dicker, A.P. (2018). Clinical integration of digital solutions in health care: an overview of the current landscape of digital technologies in cancer care. JCO Clinical Cancer Informatics. Vol. 2. Available at: https://ascopubs.org/doi/pdfdirect/10.1200/CCI.17.00 159 (accessed 28.04.2024). DOI: https://doi.org/10.1200/cci.17.00159

Huang, Ch.-Y., Yang, M.-Ch., Huang, Ch.-Y., Chen, Y.-J., Wu, M.-L. and Chen, K.-W. (2018). A chatbot-supported smart wireless interactive healthcare system for weight control and health promotion. Proceedings of the 2018 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM ‘18 (Bangkok, Thailand, December 16–19, 2018). Bangkok, TH: IEEE Publ., pp. 1791–1795. DOI: https://doi.org/10.1109/ ieem.2018.8607399

Inkster, B., Sarda, S. and Subramanian, V. (2018). An empathy-driven, conversational artificial intelligence agent (Wysa) for digital mental well-being: real-world data evaluation mixed-methods study. JMIR mHealth and uHealth. Vol. 6, iss. 11. Available at: https://mhealth.jmir.org/2018/11/e12106/PDF (accessed 25.04.2024). DOI: https://doi.org/10.2196/ 12106

Lee, M., Ackermans, S., As, N. van, Chang, H., Lucas, E. and IJsselsteijn, W. (2019). Caring for Vincent: a chatbot for self-compassion. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ‘19 (Glasgow, Scotland, UK, May 4–9, 2019). Available at: https://minhalee.github.io/files/lee_vincent_chatbot_CHI2019.pdf (accessed 23.04.2024). DOI: https://doi.org/10.1145/3290605.3300932

Martinengo, L., Lum, E. and Car, J. (2022). Evaluation of chatbot-delivered interventions for selfmanagement of depression: content analysis. Journal of Affective Disorders. Vol. 319, pp. 598–607. DOI: https://doi.org/10.1016/j.jad.2022.09.028

Pentina, I., Hancock, T. and Xie, T. (2023). Exploring relationship development with social chatbots: A mixed-method study of replica. Computers in Human Behavior. Vol. 140. Available at: https://www.sciencedirect.com/science/article/abs/pii/ S0747563222004204 (accessed 24.04.2024). DOI: https://doi.org/10.1016/j.chb.2022.107600

Rogovets, A.Yu., Mazurkevitch, A., Suvorova, I.Yu., Vinnik, M. and Prikhodko, A.A. (2023). [Chat-bot as a way to support victims of school bullying]. Sovremennaya zarubezhnaya psikhologiya [Journal of Modern Foreign Psychology]. Vol. 12, no. 3, pp. 103–114. DOI: https://doi.org/10.17759/ jmfp.2023120310

Valtolina, S. and Hu, L. (2021). Charlie: a chatbot to improve the elderly quality of life and to make them more active to fight their sense of loneliness. Proceedings of the 14th Biannual Conference of the Italian SIGCHI Chapter, CHItaly ‘21 (Bolzano, Italy, July 11– 13, 2021). New York: Association for Computing Machinery Publ. Available at: https://dl.acm.org/ doi/abs/10.1145/3464385.3464726 (accessed 23.04.2024). DOI: https://doi.org/10.1145/ 3464385.3464726

You, Y. and Gui, X. (2021). Self-diagnosis through AI-enabled chatbot-based symptom checkers: user experiences and design considerations. AMIA Annual Symposium Proceedings. Vol. 2021. Available at: https://arxiv.org/abs/2101.04796 (accessed 28.04.2024). Zhang, J., Oh, Y.J., Lange, P., Yu, Zh. and Fukuoka, Y. (2020). Artificial intelligence chatbot behavior change model for designing artificial intelligence chatbots to promote physical activity and a healthy diet: viewpoint. Journal of Medical Internet Research. Vol. 22, iss. 9. Available at: https://www.jmir.org/ 2020/9/e22845/PDF (accessed 28.04.2024). DOI: https://doi.org/10.2196/22845

Published

2024-08-07

Issue

Section

Статьи