Механизм формирования карбидокремниевого покрытия диффузионным методом в кремниевой засыпке на углерод-углеродных композиционных материалах

Авторы

  • Дмитрий Сергеевич Надольский (Dmitriy S. Nadolskiy) Пермский государственный национальный исследовательский университет
  • Андрей Георгиевич Докучаев (Andrey G. Dokuchaev) Уральский научно-исследовательский институт композиционных материалов
  • Наталья Александровна Медведева (Natalya A. Medvedeva)

DOI:

https://doi.org/10.17072/2223-1838-2020-4-385-401

Ключевые слова:

ультравысокотемпературное керамическое покрытие, углерод-углеродный композиционный ма-териал, карбид кремния, диффузионное насыщение

Аннотация

Диффузионный метод с помощью порошковой засыпки, применяемый для нанесения покрытий, описывается, как правило, с точки зрения твердофазной диффузии, приводящей к насыщению приповерхностного слоя обрабатываемой заготовки определенным элементом. На углерод-углеродных композиционных материалах данный метод позволяет осаждать покрытие из карбида кремния, повышающее стойкость материала к действию высокотемпературных окислительных сред. Анализ кинетических особенностей процесса формирования карбида кремния на углеродном материале указал на отличие данного метода от классического диффузионного насыщения. Оказалось, необходимо учитывать дополнительные процессы газообразования, происходящие в порошковой засыпке. Предложен механизм, согласно которому возможен перенос кремния через газообразный реагент SiO, генерируемый в засыпке с помощью оксидных добавок, подобных оксиду алюминия, ранее считавшихся инертными.

Биография автора

Андрей Георгиевич Докучаев (Andrey G. Dokuchaev), Уральский научно-исследовательский институт композиционных материалов

начальник лаборатории

Библиографические ссылки

Buckley, J (1988), “Carbon-Carbon Overview”, American Ceramic Society, vol. 67, no. 2, pp. 364–368.

Medford, J.E (1975), “Prediction of oxidation performance of reinforced carbon-carbon ma-terial for space shuttle leading edges”, American Institute of Aeronautics and Astronauties Inc, vol. 75, no. 75(730).

Manocha, L.M, (2003) “High performance carbon–carbon composites”, Sadhara, vol. 28, no. 1-2, pp. 349–358.

Rubin, L., (1993) “Applications of Carbon-Carbon”, Carbon–Carbon Materials and Compo-sites, Special Issue, pp. 267–278.

Edie, D.D and Diefendorf, R.J, (1993) “Carbon Fiber Manufacturing”, Carbon–Carbon Mate-rials and Composites, Special Issue, pp. 19–37.

Stroud C.W, Rummler D.R, (1980), “Mass loss of a TEOS-coated, reinforced carbon-carbon composite subjected to a simulted shuttle entry environment”, NASA Technical Memorandum 81799.

McKee, D.W, (1986), “Borate treatment of carbon fibers and carbon/carbon composites for improved oxidation resistance”, Carbon, vol. 24, no. 6, pp. 737–741.

McKee, D.W, (1987), “Oxidation behavior and protection of carbon/carbon composites”, Carbon, vol. 25, no. 4, pp. 551–557.

Sheehan, J.E, (1993), “High-Temperature Coatings on Carbon Fibers and Carbon-Carbon Composites”, Carbon–Carbon Materials and Composites, Special Issue, pp. 223–266.

Fu, Q, Li, H, Shi, X, Li, K, Sun, G, (2005), “Silicon carbide coating to protect car-bon/carbon composites against oxidation”, Scripta Materialia, vol. 52, no. 9, pp. 923–927.

Bezzi, F, (2019), “SiC/MoSi2 based coatings for Cf/C composites by two step pack cementa-tion”, Journal of the European Ceramic Society, vol. 39, no. 1, pp. 79–84.

Portnova, E.N, Poilov, V.Z, Zhakova, O.V, Dokuchaev, A.G, Kajsina, T.V, (2018), “Silicon Carbide High Temperature Ceramic Coatings”, Aktual'nye problemy poroshkovogo materialovedeniya, pp. 336–339.

Samsonov G.V and Epik A.P, Tugoplavkie pokrytiya [Refractory Coatings], 2nd ed., Metal-lurgiya, Moscow, Russia.

Lyahovich L.S, Mnogokomponentnye diffuzionnye pokrytiya [Multi-Component Diffusion Coatings], Nauka i Tekhnika, Minsk, Belarus.

Filonenko B.A, Kompleksnye diffuzionnye pokrytiya [Complex Diffusion Coatings], Mashi-nostroenie, Moscow, Russia.

Ghoshtagore R.N and Coble R.L, (1966), “Self-Diffusion in Silicon Carbide”, Physical Re-view, vol. 143, no. 2, pp. 623–626.

Hong, J.D, Davis, R.F, Newbury, D.E, (1981), “Self-diffusion of silicon-30 in α-SiC single crystals”, Journal of Materials Science, vol. 16, no. 9, pp. 2485–2494.

Hon, M.H, Davis, R.F, Newbury, D.E, (1980), “Self-diffusion of silicon-30 in polycrystal-line β-SiC”, Journal of Materials Science, vol. 15, no. 8, pp. 2073–2080.

Rüschenschmidt, K, Bracht, H, Stolwijk, N.A, Laube, M, Pensl, G, Brandes, R, (2004), “Self-diffusion in isotopically enriched silicon carbide and its correlation with dopant diffusion”, J. Appl. Phys, vol. 96, no. 3, pp. 1458–1463.

Choy, K.L, (2003), “Chemical vapour deposition of coatings”, Progress in Materials Sci-ence, vol. 48, no. 2, pp. 57–170.

Piquero, T, Vincent, H, Vincent, C, Bouix, J, (1995), “Influence of carbide coatings on the oxidation behavior of carbon fibers”, Carbon, vol. 33, no. 4, pp. 455–467.

Verdon, C, Szwedek, O, Jacques, S, Allemand, A, Le Petitcorps, Y, (2013), “Hafnium and silicon carbide multilayer coatings for the protection of carbon composites”, Surface & Coatings Tech-nology, vol. 230, pp. 124–129.

Wang, Y, Zhou, B, Wang, Z, (1995), “Oxidation protection of carbon fibers by coatings”, Carbon, vol. 33, no. 4, pp. 427–433.

Hatta, H., Aoki, T., Kogo, Y., & Yarii, T. (1999). “High-temperature oxidation behavior of SiC-coated carbon fiber-reinforced carbon matrix composites”, Composites Part A: Applied Science and Manufacturing, vol. 30, no. 4, pp. 515–520.

Rogers, D.C., Shufold, D.M., Mueller, J.I., (1975), “Formation mechanism of silicon car-bide coating for a reinforced carbon-carbon composite”, Materials Review, vol. 7, pp. 319–336.

Rogers, D.C., Shufold, D.M., Scott, R.O., (1976), “Material development aspects of an oxi-dation protection system for a reinforced carbon-carbon composite – for Space Shuttle leading edges”, Bicentennial of Materials, vol. 8, pp. 308–337.

Morimoto, T, Ogura, Y, Kondo, M, Ueda, T, (1995), “Multilayer coating for C-C compo-sites”, Carbon, vol. 33, no. 4, pp. 351–357.

Paccaud, O. and Derre, A, (2000), “Silicon Carbide Coating by Reactive Pack Cementation. Part I: Silicon Carbide/Silica Interaction”, Chem. Vap. Deposition, vol. 6, no. 1, pp. 33–40.

Paccaud, O. and Derre, A, (2000), “Silicon Carbide Coating by Reactive Pack Cementation. Part II: Silicon Monoxide/Carbon Reaction”, Chem. Vap. Deposition, vol. 6, no. 1, pp. 41–50.

Changcong Wang, Kezhi Li, Qinchuan He, Caixia Huo, Xiaohong Shi. Oxidation and abla-tion resistant properties of pack-siliconized Si-C protective coating for carbon/carbon composites // Journal of Alloys and Compounds 741 (2018) p. 937-950

Lee, Y.J and Joo, H.J, (2004), “Ablation characteristics of carbon fiber reinforced carbon (CFRC) composites in the presence of silicon carbide (SiC) coating”, Surface and Coatings Technology, vol. 180, pp. 286–289.

Jian-Feng, H., Xie-Rong, Z., He-Jun, L., Xin-Bo, X., Ye-wei, F., (2004), “Influence of the preparation temperature on the phase, microstructure and anti-oxidation property of a SiC coating for C/C composites”, Carbon, vol. 42, no. 8-9, pp. 1517–1521.

Zhang, Y. L., Li, H. J., Fu, Q. G., Li, K. Z., Wei, J., Wang, P. Y., (2006), “AC/SiC gradient oxidation protective coating for carbon/carbon composites” Surface and Coatings Technology, vol. 201, no. 6, pp. 3491–3495.

Kondo, M., Morimoto, T., Kohyama, A., Tsunakawa, H., (1993), “Microstructures of Car-bons and C/C Composites SiC-Coated by Conversion Method”, ICCM/9, vol. 3, pp. 703–710.

Zhang, Y., Li, H., Qiang, X., Li, K., (2010), “Oxidation protective C/SiC/Si-SiC multilayer coating for carbon/carbon composites applying at 1873 K”, Journal of Materials Science & Technolo-gy, vol. 26, no. 12, pp. 1139–1142.

Wu, H., Li, H. J., Ma, C., Fu, Q. G., Wang, Y. J., Wei, J. F., Tao, J., (2010), “MoSi2-based oxidation protective coatings for SiC-coated carbon/carbon composites prepared by supersonic plasma spraying”, Journal of the European Ceramic Society, vol. 30, no. 15, pp. 3267–3270.

Zhang, Y., Hu, Z., Ren, J., Li, H., Yang, B., Zhang, L., (2014), “Influence of preparation temperature on the oxidation resistance and mechanical properties of C/SiC coated C/C composites”, Corrosion science, vol. 86, pp. 337–342.

Zhou, Z., Sun, Z., Ge, Y., Peng, K., Ran, L., Yi, M., (2018), “Microstructure and ablation performance of SiC–ZrC coated C/C composites prepared by reactive melt infiltration”, Ceramics Inter-national, vol. 44, no. 7, pp. 8314–8321.

Yang, G., Wang, X., Huang, Z., (2018), “Microstructure and antioxidation performance of SiC-ZrO-MoSi2/Ni coated carbon fiber produced by composite electroplating”, Ceramics International, vol. 44, no. 9, pp. 10834–10839.

Fan, S., Zhang, L., Xu, Y., Cheng, L., Lou, J., Zhang, J., Yu, L., (2007), “Microstructure and properties of 3D needle-punched carbon/silicon carbide brake materials”, Composites Science and Technology, vol. 67, no. 11-12, pp. 2390–2398.

Belenkov, E.A and Tyumencev, V.A, (1998), “Phase formation during the interaction of Si and Si-Me melts with a carbon surface”, Izvestiya Chelyabinskogo nauchnogo centra UrO RAN, no. 1, pp. 21–24.

Wang, C., Li, K., He, Q., Huo, C., Shi, X. (2018), “Oxidation and ablation resistant proper-ties of pack-siliconized Si-C protective coating for carbon/carbon composites” Journal of Alloys and Compounds, vol. 741, pp. 937–950.

Zhang, Y.-L., Li, H.-J., Fu, Q.-G., Li, K.-Z., Wei, J., Wang, P.-Y. (2006), “A C/SiC gradient oxidation protective coating for carbon/carbon composites”, Surface and Coatings Technology, vol. 201, pp. 3491–3495.

Bartuli, C., Valente, T., Tului, M., (2002), “Plasma spray deposition and high temperature characterization of ZrB2–SiC protective coatings”, Surface and Coatings Technology, vol. 155, no. 2–3, pp. 260–273.

Bushuev, V.M., Sinani, I.L., Butuzov, S.E., (2012), “Prospects for the use of the siliconiz-ing process in the manufacture of large-sized sealed structures from silicon carbide materials”, Izvestiya vysshih uchebnyh zavedenij. Himiya i himicheskaya tekhnologiya, vol. 55, no. 6, pp. 63–66.

Bushuev, V. M., Lunegov, S. G., Bushuev, M. V., (2015), “Development of a combined method of siliconizing large-sized C/C composite items, based on an alternative liquid-phase method and the use of the process of capillary condensation of silicon vapors”, Vestnik Permskogo nacion-al'nogo issledovatel'skogo politekhnicheskogo universiteta. Aerokosmicheskaya tekhnika, vol. 40, pp. 44–63.

Bushuev, V.M., Bushuev, M.V., Mertvishchev, D.S., Butuzov, S.E., (2013), Sposob izgotovleniya izdelij iz uglerod-karbidokremnievogo materiala [Method of manufacturing products from carbon-silicon carbide material], Perm, RU, Patent № 2494998 C2.

Загрузки

Опубликован

2020-12-30

Как цитировать

Надольский (Dmitriy S. Nadolskiy) Д. С., Докучаев (Andrey G. Dokuchaev) А. Г., & Медведева (Natalya A. Medvedeva) Н. А. (2020). Механизм формирования карбидокремниевого покрытия диффузионным методом в кремниевой засыпке на углерод-углеродных композиционных материалах. Вестник Пермского университета. Серия «Химия», 10(4). https://doi.org/10.17072/2223-1838-2020-4-385-401

Выпуск

Раздел

Физическая химия и электрохимия