Expression of some transcription factors CBF (C-REPEAT BINDING FACTOR) in rye seedlings (Secale cereale L.) under cold stress

Main Article Content

Viktoriia A. Pechenkina
Alisa S. Shestiperstova
Yulia S. Vasileva
Svetlana V. Boronnikova

Abstract

Winter rye is one of the most important food crops in the world. Due to its high adaptability, winter hardiness and ability to yield on low-fertility soils, winter rye helps stabilize the gross grain harvest. For the vast majority of crop plants, the main stress-causing environmental factor is temperature. This is especially true for its lower values in cultivation areas. The response to low temperatures in plants is formed at the cellular level. Genes and transcription factors responsible for cold resistance are activated, which ensure plant survival. One of the most important mechanisms capable of activating the adaptive response of rye to cold is the CBF (C-repeat Binding Factor) family of transcription factors. The aim of this work was to identify the expression level of some genes of the ScCBF family (ScCBF1, ScCBF4, ScCBF14, ScCBF18) in seedlings of sowing rye (Secale cereale L.) under cold stress. S. cereale seedlings were divided into four groups based on the duration of cold stress (1, 6, 12, 24 h). One control group was not exposed to cold stress. RNA of seedlings from different cold stress groups was analyzed by real-time PCR. The study showed that the expression levels of ScCBF1, ScCBF4, ScCBF14, and ScCBF18 genes changed to varying degrees in response to low positive temperature. The highest level of normalized expression of ScCBF1 and ScCBF14 genes was observed under 6-hour cold stress. In the case of ScCBF4 gene, the highest level of its normalized expression was observed under 24-hour cold stress. The level of normalized expression of ScCBF18 gene reached its peak under 12-hour stress.

Article Details

How to Cite
Pechenkina В. А., Shestiperstova А. С. ., Vasileva Ю. С. ., & Boronnikova С. В. . (2024). Expression of some transcription factors CBF (C-REPEAT BINDING FACTOR) in rye seedlings (Secale cereale L.) under cold stress. Bulletin of Perm University. Biology, (3), 327‒334. https://doi.org/10.17072/1994-9952-2024-3-327-334
Section
Генетика
Author Biographies

Viktoriia A. Pechenkina, Perm State University, Perm, Russia

Postgraduate student and assistant of the Department of Botany and Plant Genetics, Junior researcher Laboratory of Photonics

Alisa S. Shestiperstova, Perm State University, Perm, Russia

Bachelor's student

Yulia S. Vasileva, Perm State University, Perm, Russia

Candidate of biology; assistant professor of the Department of Botany and Plant Genetics

Svetlana V. Boronnikova, Perm State University, Perm, Russia

Doctor of Biological Sciences, Professor, Head of the Department of Botany and Plant Genetics

References

Бракк Д.Г. Продовольственная безопасность в условиях климатических трансформаций // Эконо-мическая безопасность. 2023. Т. 6, № 1. С. 367–384. DOI: 10.18334/ecsec.6.1.117557.

Ерастенкова М.В., Тихонова Н.Г., Ухатова Ю.В. Изучение молекулярных механизмов устойчивости винограда (Vitis vinifera L.) к низкотемпературному стрессу // Биотехнология и селекция растений. 2023. Т. 6, № 4. С. 48–60.

Кобяков А.С., Оразаева И.В. Хозяйственно-биологические признаки сортов и гибридов озимой ржи в условиях ЦЧР // Горинские чтения. Инновационные решения для АПК: материалы междунар. науч.-практ. студ. конф. Майский, 2021. С. 33.

Кузмицкая П.В., Королева Е.С., Урбанович О.Ю. Влияние некоторых абиотических факторов на профили экспрессии генов, кодирующих стресс-ассоциированные белки яблони // Известия Националь-ной академии наук Беларуси. Сер. биологических наук. 2024. Т. 69, № 2. С. 143–152.

Люсиков О.М. и др. Молекулярно-генетические аспекты устойчивости озимой пшеницы (Triticum L.) к низкотемпературному стрессу // Молекулярная и прикладная генетика. 2022. Т. 33. С. 137–150.

Мелешкина Е.П., Бундина О.И. Производство, переработка и потребление зерна ржи в России: направления развития // Пищевая промышленность. 2020. № 12. С. 55–59.

Пономарева М.Л. Современные реалии производства ржи и задачи селекционной науки // Гено-фонд и селекция растений: материалы сател. симпозиума V Междунар. конф. Новосибирск, 2020. С. 85–89.

Сизенцова Я.Г., Омельянчук Н.А., Миронова В.В. Мета-анализ данных транскриптомов выявил ге-ны-кандидаты устойчивости к низким положительным температурам у Arabidopsis thaliana L. // Биотех-нология в растениеводстве, животноводстве и сельскохозяйственной микробиологии: сб. тез. докл. 21-ой Всерос. молодеж. науч. конф. М., 2021. С. 12.

Трущелев А.Б. Селекция растений в условиях меняющегося климата // Балтийский морской форум: материалы VIII Междунар. Балт. мор. форума. Калининград, 2020. Т. 1. С. 156–160.

Федореева Л.И. и др. Сравнительная характеристика и адаптивные механизмы солеустойчивости у разных генотипов твердой и мягкой пшеницы // Сельскохозяйственная биология. 2023. Т. 58, № 3. С. 510–524.

Barah P. et al. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana eco-types // BMC genomics. 2013. Vol. 14. P. 1–16.

Barrero-Gil J., Salinas J. Gene Regulatory Networks Mediating Cold Acclimation: The CBF Pathway // Iwaya-Inoue M., Sakurai M., Uemura M. (eds). Survival Strategies in Extreme Cold and Desiccation. Advances in Experimental Medicine and Biology. 2018. Vol. 1081. P. 3–22. https://doi.org/10.1007/978-981-13-1244-1_1.

Desrosiers C., Karypis G. A Comprehensive Survey of Neighborhood-Based Recommendation Methods. Recommender Systems Handbook. Springer, 2011. P. 107–144.

Caccialupi, G. et al. The Triticeae CBF Gene Cluster – To Frost Resistance and Beyond // Cells. 2023. Vol. 12, № 22. Art. 2606.

Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction // Analytical biochemistry. 1987. Vol. 162, № 1. P. 156–159.

Ghanbarian A.T., Hurst L.D. Neighboring genes show correlated evolution in gene expression // Molecular biology and evolution. 2015. Vol. 32, № 7. P. 1748–1766.

Jung W.J., Seo Y.W. Identification of novel C-repeat binding factor (CBF) genes in rye (Secale cereale L.) and expression studies // Gene. 2019. Vol. 684. P. 82–94.

Medina J. et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration // Plant physiology. 1999. Vol. 119, № 2. P. 463–470.

Mizoi J., Shinozaki K., Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses // Biochimica et Biophysica Acta. 2012. Vol. 1819(2). P. 86–96. DOI: 10.1016/j.bbagrm.2011.08.004.

Rao X. et al. An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis // Biostat Bioinforma Biomath. 2013. Vol. 3, № 3. P. 71–85.

Wang D.Z. et al. Gene regulation and signal transduction in the ICE–CBF–COR signaling pathway during cold stress in plants // Biochemistry (Moscow). 2017. Vol. 82. P. 1103–1117. https://doi.org/10.1134/S0006297917100030.