The effect of psychrotolerant methylotrophic bacteria on the growth, pigment content and accumulation of protein and carbohydrates in the microalgae Chlorella vulgaris

Main Article Content

Dmitry Y. Sharavin
Polina G. Belyaeva
Ekaterina M. Tseshchinskaya
Valentina V. Galyamina

Abstract

The study is devoted to the effect of six psychrotolerant methylotrophic bacteria isolated from samples of moss-lichen community and water bodies, collected at the territory of Antarctic oases and mountainous region of the Altai republic on the growth, pigment content and accumulation of protein and carbohydrates by the green microalgae Chlorella vulgaris at temperatures of +10°C and +20°C. Standard growth curves of chlorella without bacterial suspension at +20°C and +10°C reached the stationary growth phase on days 5-6 and 9, respectively, reaching 30 and 16×106 cells/ml. It was found that five of the six psychrotolerant strains had no effect on the number of chlorella cells, pigment content and protein concentration when co-cultured with microalgae at the temperature of +10°C. A positive effect was found only for xPrg3, in particularly on the carbohydrate concentration. A negative effect of Bel19 on the cell number and pigment content at +10°C was also found. Inoculation of chlorella under the temperature of +20°C with same bacterial strains lead to increase in: cell number with the strain xPrg3, chlorophyll a with Bel19 (119% of the control), carbohydrates with the isolate xPrg17 and intracellular protein content with Al5, Bel19, Bel62 and xPrg17.

Article Details

How to Cite
Sharavin Д. Ю., Belyaeva П. Г., Tseshchinskaya Е. М., & Galyamina В. В. (2024). The effect of psychrotolerant methylotrophic bacteria on the growth, pigment content and accumulation of protein and carbohydrates in the microalgae Chlorella vulgaris. Bulletin of Perm University. Biology, (4), 412–420. https://doi.org/10.17072/1994-9952-2024-4-412-420
Section
Микробиология
Author Biographies

Dmitry Y. Sharavin, Institute of Ecology and Genetics of Microorganisms of the Ural Branch RAS, Perm, Russia

candidate of biology, junior researcher of the Laboratory of cell immunology and nanobiotechnology

Polina G. Belyaeva, Institute of Ecology and Genetics of Microorganisms of the Ural Branch RAS, Perm, Russia

doctor of biology, senior scientist of the Laboratory of cell immunology and nanobiotechnology

Ekaterina M. Tseshchinskaya, Institute of Ecology and Genetics of Microorganisms of the Ural Branch RAS, Perm, Russia

engineer of the Laboratory of cell immunology and nanobiotechnology

Valentina V. Galyamina, Institute of Ecology and Genetics of Microorganisms of the Ural Branch RAS, Perm, Russia

candidate of biology, engineer of the Laboratory of cell immunology and nanobiotechnology

References

Шаравин Д.Ю. и др. Влияние психротолерантных метилотрофных бактерий на рост и концентра-цию пигментов микроводоросли Chlorella vulgaris // Развитие современных систем земледелия и живот-новодства, обеспечивающих экологическую безопасность окружающей среды: материалы Всерос. науч. конф. Пермь, 2023. С. 398-404.

Balcazar W. et al. Bioprospecting glacial ice for plant growth promoting bacteria // Microbiol. Res. 2015. Vol. 177. P. 1–7. DOI: 10.1016/j.micres.2015.05.001.

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein uti-lizing the principle of protein-dye binding // Analytical Biochemistry. 1976. Vol. 72. P. 248–254. DOI: 10.1006/abio.1976.9999.

Cao K. et al. The eurythermal adaptivity and temperature tolerance of a newly isolated psychrotolerant Arctic Chlorella sp. // J. Appl. Phycol. 2016. Vol. 28. P. 877–888. DOI: 10.1007/s10811-015-0627-0.

Dai Y.R. et al. Thermal-tolerant potential of ordinary Chlorella pyrenoidosa and the promotion of cell harvesting by heterotrophic cultivation at high temperature // Front. Bioeng. Biotechnol. 2022. Vol. 10. Art. 1072942. DOI: 10.3389/fbioe.2022.1072942.

Delmotte N. et al. Community proteogenomics reveals insights into physiology of phyllosphere bacteria // PNAS. 2009. Vol. 106, № 38. P. 16428–16433. DOI: 10.1073/pnas.0905240106.

Dvoretsky D. et al. The effect of the complex processing of microalgae Chlorella vulgaris on the intensi-fication of the lipid extraction process // Chem. Eng. Trans. 2017. Vol. 57. P. 721–726. DOI: 10.3303/CET1757121.

Herbert D., Phipps P.J., Strange R.E. Chapter III. Chemical analysis of microbial cells // Methods in micro-biology / eds. J.R. Norris, D.W. Ribbons. 1971. Vol. 5. P. 209–344.

Hoover R.B., Pikuta E.V. Psychrophilic and psychrotolerant microbial extremophiles in polar environ-ments. CRS Press, 2010. P. 1–42. URL: https://ntrs.nasa.gov/api/citations/20100002095/downloads/20100002095.pdf.

Idenyi J.N. et al. Characterization of strains of Chlorella from Abakaliki, Nigeria, for the production of high-value products under variable temperatures // J. Appl. Phycol. 2021. Vol. 33. P. 275–285. DOI: 10.1007/s10811-020-02313-y.

Kutschera U. Plant-associated methylobacteria as co-evolved phytosymbionts // Plant Signaling & Be-havior. 2007. Vol. 2, № 2. P. 74–78. DOI: 10.4161/psb.2.2.4073.

Lichtenthaler H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes // Methods Enzymol. 1987. Vol. 148. P. 350–382. doi: 10.1016/0076-6879(87)48036-1.

Lindberg A. et al. Cold stress stimulates algae to produce value-added compounds // Biores. Technol. Rep. 2022. Vol. 19. Art. 101145. DOI: 10.1016/j.biteb.2022.101145.

Madhaiyan M. et al. Methylobacterium oryzae sp. nov., an aerobic pinc-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice // IJSEM. 2007. Vol. 57. P. 326–331. DOI: 10.1099/ijs.0.64603-0.

Mincer T.J., Aicher A.C. Methanol production by a broad phylogenetic array of marine phytoplankton // PLoS ONE. 2016. Vol. 11, № 3. Art. e0150820. DOI: 10.1371/journal.pone.0150820.

Miteva V.R. Bacteria in Snow and Glacier Ice // Margesin R. et al. Psychrophiles: from biodiversity to bi-otechnology. 2008. P. 31–50. DOI: 10.1007/978-3-540-74335-4_3.

Priscu J.C., Christner B.C. Earth’s icy biosphere // Microbial diversity and bioprospecting. ASM Press, 2004. P. 130–145.

Rogers T.L. et al. Trophic control changes with season and nutrient loading in lakes // Ecol. Lett. 2020. Vol. 23, № 8. P. 1287–1297. DOI: 10.1111/ele.13532.

Sajjad W. et al. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications // Extremophiles. 2020. Vol. 24. P. 447–473. DOI: 10.1007/s00792-020-01180-2.

Sharavin D.Y., Belyaeva P.G. Biotechnological potential of psychrotolerant methylobacteria isolated from biotopes of Antarctic oases // Arch. Microbiol. 2024. Vol. 206, № 323. P. 1–16. DOI: 10.1007/s00203-024-04056-7.

Wirth R. et al. Chlorella vulgaris and its phycosphere in wastewater: Microalgae-bacteria interactions during nutrient removal // Front. Bioeng. Biotechnol. 2020. Vol. 8. Art. 557572. DOI: 10.3389/fbioe.2020.557572.