The effect of psychrotolerant methylotrophic bacteria on the growth, pigment content and accumulation of protein and carbohydrates in the microalgae Chlorella vulgaris
Main Article Content
Abstract
Article Details
References
Шаравин Д.Ю. и др. Влияние психротолерантных метилотрофных бактерий на рост и концентра-цию пигментов микроводоросли Chlorella vulgaris // Развитие современных систем земледелия и живот-новодства, обеспечивающих экологическую безопасность окружающей среды: материалы Всерос. науч. конф. Пермь, 2023. С. 398-404.
Balcazar W. et al. Bioprospecting glacial ice for plant growth promoting bacteria // Microbiol. Res. 2015. Vol. 177. P. 1–7. DOI: 10.1016/j.micres.2015.05.001.
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein uti-lizing the principle of protein-dye binding // Analytical Biochemistry. 1976. Vol. 72. P. 248–254. DOI: 10.1006/abio.1976.9999.
Cao K. et al. The eurythermal adaptivity and temperature tolerance of a newly isolated psychrotolerant Arctic Chlorella sp. // J. Appl. Phycol. 2016. Vol. 28. P. 877–888. DOI: 10.1007/s10811-015-0627-0.
Dai Y.R. et al. Thermal-tolerant potential of ordinary Chlorella pyrenoidosa and the promotion of cell harvesting by heterotrophic cultivation at high temperature // Front. Bioeng. Biotechnol. 2022. Vol. 10. Art. 1072942. DOI: 10.3389/fbioe.2022.1072942.
Delmotte N. et al. Community proteogenomics reveals insights into physiology of phyllosphere bacteria // PNAS. 2009. Vol. 106, № 38. P. 16428–16433. DOI: 10.1073/pnas.0905240106.
Dvoretsky D. et al. The effect of the complex processing of microalgae Chlorella vulgaris on the intensi-fication of the lipid extraction process // Chem. Eng. Trans. 2017. Vol. 57. P. 721–726. DOI: 10.3303/CET1757121.
Herbert D., Phipps P.J., Strange R.E. Chapter III. Chemical analysis of microbial cells // Methods in micro-biology / eds. J.R. Norris, D.W. Ribbons. 1971. Vol. 5. P. 209–344.
Hoover R.B., Pikuta E.V. Psychrophilic and psychrotolerant microbial extremophiles in polar environ-ments. CRS Press, 2010. P. 1–42. URL: https://ntrs.nasa.gov/api/citations/20100002095/downloads/20100002095.pdf.
Idenyi J.N. et al. Characterization of strains of Chlorella from Abakaliki, Nigeria, for the production of high-value products under variable temperatures // J. Appl. Phycol. 2021. Vol. 33. P. 275–285. DOI: 10.1007/s10811-020-02313-y.
Kutschera U. Plant-associated methylobacteria as co-evolved phytosymbionts // Plant Signaling & Be-havior. 2007. Vol. 2, № 2. P. 74–78. DOI: 10.4161/psb.2.2.4073.
Lichtenthaler H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes // Methods Enzymol. 1987. Vol. 148. P. 350–382. doi: 10.1016/0076-6879(87)48036-1.
Lindberg A. et al. Cold stress stimulates algae to produce value-added compounds // Biores. Technol. Rep. 2022. Vol. 19. Art. 101145. DOI: 10.1016/j.biteb.2022.101145.
Madhaiyan M. et al. Methylobacterium oryzae sp. nov., an aerobic pinc-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice // IJSEM. 2007. Vol. 57. P. 326–331. DOI: 10.1099/ijs.0.64603-0.
Mincer T.J., Aicher A.C. Methanol production by a broad phylogenetic array of marine phytoplankton // PLoS ONE. 2016. Vol. 11, № 3. Art. e0150820. DOI: 10.1371/journal.pone.0150820.
Miteva V.R. Bacteria in Snow and Glacier Ice // Margesin R. et al. Psychrophiles: from biodiversity to bi-otechnology. 2008. P. 31–50. DOI: 10.1007/978-3-540-74335-4_3.
Priscu J.C., Christner B.C. Earth’s icy biosphere // Microbial diversity and bioprospecting. ASM Press, 2004. P. 130–145.
Rogers T.L. et al. Trophic control changes with season and nutrient loading in lakes // Ecol. Lett. 2020. Vol. 23, № 8. P. 1287–1297. DOI: 10.1111/ele.13532.
Sajjad W. et al. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications // Extremophiles. 2020. Vol. 24. P. 447–473. DOI: 10.1007/s00792-020-01180-2.
Sharavin D.Y., Belyaeva P.G. Biotechnological potential of psychrotolerant methylobacteria isolated from biotopes of Antarctic oases // Arch. Microbiol. 2024. Vol. 206, № 323. P. 1–16. DOI: 10.1007/s00203-024-04056-7.
Wirth R. et al. Chlorella vulgaris and its phycosphere in wastewater: Microalgae-bacteria interactions during nutrient removal // Front. Bioeng. Biotechnol. 2020. Vol. 8. Art. 557572. DOI: 10.3389/fbioe.2020.557572.