Study of the influence of oxo-derivates of nitrogen-containing heterocycles compounds on the intestinal microbiome composition of rats

Main Article Content

Galina A. Triandafilova
Oleg N. Oktyabrsky

Abstract

The effect on the intestinal microbiome of rats of three compounds belonging to different classes of oxo-derivatives of nitrogen-containing heterocycles: CBR-384, CBR-376 and CBR-124 was studied. These substances have high biological activity in animal models and are capable to influence several physiological parameters of Escherichia coli bacteria, which are one of the components of the microbiome of humans and animals. For the first time, a important effect of CBR-384 on the intestinal microbiome composition of rats was shown: a significant decrease in the number of pathogenic bacteria of the genera Shigella and Stenotrophomonas was observed by 10 and 12 times, respectively. In addition, the substance caused an increase in the ratio of the genera Akkermansia / Lachnospiraceae, which, according to literature sources, is a positive change in the microbiome composition. When exposed to CBR-376, there was a 12.9-fold decrease in the number of bacteria from the family Lachnospiraceae and an increase in representatives of the families Xanthomonadaceae (2-fold), Enterobacterales (3-fold) and Pseudomonadaceae (10-fold). CBR-124 did not cause significant changes in the intestinal microbiome composition of rats.

Article Details

How to Cite
Triandafilova Г. А. ., & Oktyabrsky О. Н. . (2024). Study of the influence of oxo-derivates of nitrogen-containing heterocycles compounds on the intestinal microbiome composition of rats. Bulletin of Perm University. Biology, (2), 205–211. https://doi.org/10.17072/1994-9952-2024-2-205-211
Section
Микробиология
Author Biographies

Galina A. Triandafilova, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, RAS, Perm, Russia

Engineer in the Laboratory of physiology and genetics of microorganisms

Oleg N. Oktyabrsky, Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, Russia

doctor of biology, professor, director of Laboratory of physiology and genetics of microorganisms

References

Abraham W.R., Rohde M., Bennasar A. The family Caulobacteraceae // The Prokaryotes: Alphaproteo-bacteria and Betaproteobacteria. Berlin; Heidelberg: Springer-Verlag, 2014. P. 179–205.

An S.-Q., Berg G. Stenotrophomonas maltophilia // Trends in Microbiology. 2018. V. 26(7). P. 637–638. DOI: 10.1016/j.tim.2018.04.006.

Boteva A.A. et al., Synthesis and analgesic activity of [b]-annelated 4-quinolones // Pharmaceutical Chemistry Journal. 2019. Vol. 53. P. 616–619. DOI: 10.1007/s11094-019-02048-2.

Chen P.C. et al. The Alteration of Akkermansiaceae/Lachnospiraceae ratio is a microbial feature of anti-biotic-induced microbiota remodeling // Bioinformatics and Biology Insights. 2023. Vol. 17. DOI: 10.1177/11 779322231166229.

Derrien M. et al. Akkermansia muciniphila and its role in regulating host functions // Microbial Pathogene-sis. 2017. Vol. 106. P. 171–181. DOI: 10.1016/j.micpath.2016.02.005.

Enright E.F. et al. The impact of the gut microbiota on drug metabolism and clinical outcome. // Yale Journal of Biology and Medicine. 2016. Vol. 89. P. 375–382.

Gámez-Valdez J.S et al. Differential analysis of the bacterial community in colostrum samples from women with gestational diabetes mellitus and obesity // Scientific Reports. 2021. Vol. 11(1). Art. 24373. DOI: 10.1038/s41598-021-03779-7.

Gao J., Hou H., Gao F. Current scenario of quinolone hybrids with potential antibacterial activity against ESKAPE pathogens // European Journal of Medicinal Chemistry. 2023. Vol. 247. № 115026. DOI: 10.1016/ j.ejmech.2022.115026.

Heeney, D.D., Gareau M.G., Marco M.L. Intestinal Lactobacillus in health and disease, a driver or just along for the ride? // Curr. Opin. Biotechnol. 2018. Vol. 49. P. 140–147.

Hoyles L. Diversity of the class Coriobacteriia within different ecosystems // Access Microbiology. 2019. Vol. 1(7). P. 1. DOI: 10.1099/acmi.afm2019.po0004.

Jiang S., Awadasseid A., Narva S. Anti-cancer activity of benzoxazinone derivatives via targeting c-Myc G-quadruplex structure // Life Sciences. 2020. Vol. 258, № 118252. DOI: 10.1016/j.lfs.2020.118252.

Kho Z.Y., Lal S.K. The human gut microbiome – a potential controller of wellness and disease. // Fron-tiers in Microbiology. 2018. Vol. 9. P. 1–23. DOI: 10.3389/fmicb.2018.01835.

Liu Y. et al. Disorder of gut amino acids metabolism during CKD progression is related with gut microbio-ta dysbiosis and metagenome change // Journal of Pharmaceutical and Biomedical Analysis. 2018. Vol. 149. P. 425–435. DOI: 10.1016/j.jpba.2017.11.040.

Marchesi J.R., Ravel J. The vocabulary of microbiome research: a proposal // Microbiome. 2015. Vol. 3. P. 1–3. DOI: 10.1186/s40168-015-0094-5.

Rowland I. at al. Gut microbiota functions: metabolism of nutrients and other food components // Euro-pean Journal of Nutrition. 2018. Vol. 57. P. 1–24. DOI: 10.1007/s00394-017-1445-8.

Soukup S.T. et al. Metabolism of daidzein and genistein by gut bacteria of the class Coriobacteriia // Foods. 2021. Vol. 10(11). 2741. DOI: 10.3390/foods10112741.

Tian R. et al. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environ-ment drives their genome simplicity // Microbiome. 2020. 8(1). Art. 51. DOI: 10.1186/s40168-020-00825-w.

Triandafilova G. et al. Antimicrobial and antioxidant activity of some nitrogen containing heterocycles and their acyclic analogues // Indian Journal of Microbiology. 2023. DOI: 10.1007/s12088-023-01158-6.

Vacca M. et al. The controversial role of human gut Lachnospiraceae // Microorganisms. 2020. Vol. 8(4). 573. DOI: 10.3390/microorganisms8040573.

Yang J. et al. Oscillospira - a candidate for the next-generation probiotics // Gut Microbes. 2021. Vol. 13(1). Art. 1987783. DOI: 10.1080/19490976.2021.1987783.