The effect of heavy metals on strains of the genus Enterococcus The effect of heavy metals on strains of the genus Enterococcus

Main Article Content

Sergeevna
Viktorovna

Abstract

Heavy metals are widespread pollutants of natural water, where they end up because of almost constant use in agriculture and due to the discharge of industrial wastewater: primarily lead, cadmium and copper. On the other hand, heavy metals such as copper and zinc are known to be cofactors in many cellular processes and are required for cell survival in small concentrations. At the same time, such a heavy metal as cadmium does not function as a cofactor in the bacterial cell and has a toxic nature, disrupting cellular processes and causing cell death if the concentration exceeds a certain threshold. Thus, the sensitivity of enterococci to heavy metals is a property that characterizes the dynamics of anthropogenic load on the microbiocenosis of both freshwater and marine aquatic ecosystems. The aim of this investigation is to study the effect of heavy metals on strains of the genus Enterococcus isolated from the aquatic environment. Materials and methods: 18 water samples from the Second River mouth were studied, 30 strains of bacteria of the genus Enterococcus were isolated. Identification was carried out using the polymerase chain reaction method. Cell morphology was studied using light microscopy, and resistance to heavy metals was determined by the presence or absence of growth on a plate with different concentrations of metals (copper, cadmium, zinc). The results of the study showed that with an increase in the concentration of heavy metals in bacteria of the genus Enterococcus, the morphological characteristics change, and exceeding the MPC (maximum permissible concentration) leads to the death of the bacterium. According to the rate of action of the studied metals, they can be arranged in the following sequence: Cd > Cu > Zn.

Article Details

How to Cite
Uskova С. С., & Martynova А. В. (2024). The effect of heavy metals on strains of the genus Enterococcus : The effect of heavy metals on strains of the genus Enterococcus. Bulletin of Perm University. Biology, (4), 390–400. https://doi.org/10.17072/1994-9952-2024-4-390-400
Section
Микробиология
Author Biographies

Sergeevna, Far Eastern Federal University, Vladivostok, Russia

postgraduate student of the department of biodiversity and marine bioresources

Viktorovna, Far Eastern Federal University, Vladivostok, Russia

doctor of medical sciences, professor of the department of biodiversity and marine bioresources; professor of the Department of Epidemiology and Military Epidemiology

References

Бузолева Л.С. Микробиологическая оценка качества природных вод. Владивосток, 2011. 85 с.

Коршенко А.Н. Качество морских вод по гидрохимическим показателям. Ежегодник 2019. М.: Наука, 2020. 281 с.

Красная Ю.В., Нестеров А.С., Потатуркина-Нестерова Н.И. Значение бактерий рода Enterococcus в жизнедеятельности человека // Современные проблемы науки и образования. 2014. № 3. С. 1169–1178.

Прунтова О.В. Лабораторный практикум по общей микробиологии. М.: Владимир, 2005. 77 с.

Шулькин В.М., Богданова Н.Н., Киселев В.И. Металлы в речных водах Приморского края // Геохи-мия. 2007. Т. 1. С. 79–88.

Abou-Shanab R., Berkum V.P., Angle J. Heavy metal resistance and genotypic analysis of metal re-sistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizo-sphere of Alyssum murale // Chemosphere. 2007. Vol. 68. P. 360–367. DOI: 10.1016/j.chemosphere.2006.12.051.

Abrantes M.C., Kok J., Lopes M.de F.S. Enterococcus faecalis zinc-responsive proteins mediate bacterial defence against zinc overload, lysozyme and oxidative stress // Microbiology. 2014. Vol. 160. P. 2755–2762. DOI: 10.1099/mic.0.080341-0.

Arguello J.M., Raimunda D., Padilla-Benavides T. Mechanisms of copper homeostasis in bacteria // Fron-tiers in Cellular and Infection Microbiology. 2013. Vol. 3, № 73. P. 1–14. DOI: 10.3389/fcimb.2013.00073.

Ayangbenro A.S., Babalola O.O. A new strategy for heavy metal polluted environments: a review of mi-crobial biosorbents // Int. J. Environ. Res. Public. Health. 2017. Vol. 14, № 94. P. 1–16. DOI: 10.3390/ijerph14010094.

Barbosa J., Borges S., Teixeira P. Selection of potential probiotic Enterococcus faecium isolated from Portuguese fermented food // International Journal of Food Microbiology. 2014. Vol. 191. P. 144–148. DOI: 10.1016/j.ijfoodmicro.2014.09.009.

Burgmann H. et al. Water, and sanitation: an essential battlefront in the war on antimicrobial resistance // FEMS Microbiol. Ecol. 2018. Vol. 94. P. 1–14. DOI: 10.1093/femsec/fiy101.

Butaye P., Devriese L.A., Haesebrouck F. Differences in Antibiotic Resistance Patterns of Enterococcus faecalis and Enterococcus faecium Strains Isolated from Farm and Pet Animals // Antimicrobial Agents and Chemotherapy. 2001. Vol. 45, № 5. P. 1374–1378. DOI: 10.1128/AAC.45.5.1374-1378.2001.

Cesare Di A. et al. The marine environment as a reservoir of enterococci carrying resistance and virulence genes strongly associated with clinical strains // Environmental Microbiology Reports. 2014. Vol. 6, № 2. P. 184–190. DOI: 10.1111/1758-2229.12125.

Frei A. et al. Metals to combat antimicrobial resistance // Nature Reviews Chemistry. 2023. Vol. 7. P. 202–224. DOI: 10.1038/s41570-023-00463-4.

Fu F., Wang Q. Removal of heavy metal ions from wastewaters: a review // J. Environ. Manage. 2011. Vol. 92. P. 407–418. DOI: 10.1016/j.jenvman.2010.11.011.

Garrido A.M., Galvez A., Pulido R.P. Antimicrobial Resistance in Enterococci // J. Infect. Dis. Ther. 2014. Vol. 2, № 4. P. 1–7. DOI: 10.4172/2332-0877.1000150.

Gin K.Y.H., Goh S.G. Modeling the effect of light and salinity on viable but non-culturable (VBNC) En-terococcus // Water Research. 2013. Vol. 47, № 10. P. 3315–3328. DOI: 10.1016/j.watres.2013.03.021.

Gupta S. et al. Ahammad Heavy metal and antibiotic resistance in four Indian and UK rivers with differ-ent levels and types of water pollution // Science of The Total Environment. 2023. Vol. 857, № 1. Art. 159059. DOI: 10.1016/j.scitotenv.2022.159059.

Hasman H., Aarestrup F.M. tcrB, a gene conferring transferable copper resistance in Enterococcus faeci-um: occurrence, transferability, and linkage to macrolide and glycopeptide resistance // Antimicrob Agents Chemother. 2002. Vol. 46. P. 1410–1416. DOI: 10.1128/aac.46.5.1410-1416.2002l.

Jungmann J. et al. Resistance to cadmium mediated by ubiquitin-dependent proteolysis // Nature. 1993. Vol. 361. P. 369–371.

Li X., Krumholz L.R. Regulation of arsenate resistance in Desulfovibrio desulfuricans G20 by an arsRBCC operon and an arsC gene // J. Bacteriol. 2007. Vol. 189. P. 3705–3711. DOI: 10.1128/jb.01913-06.

Paplace J.M., Boutibonnes P., Auffray Y. Unusual resistance and acquired tolerance to cadmium chlo-ride in Enterococcus faecalis // J. Basic. Microbiol. 1996. Vol. 36. P. 311–317. DOI: 10.1002/jobm.3620360504.

Parsons C., Lee S., Kathariou S. Dissemination and conservation of cadmium and arsenic resistance de-terminants in Listeria and other Gram-positive bacteria // Molecular Microbiology. 2020. Vol. 113. P. 560–569. DOI: 10.1111/mmi.14470.

Sadowy E., Luczkiewicz A. Drug-resistant and hospital-associated Enterococcus faecium from wastewater, riverine estuary and anthropogenically impacted marine catchment basin // BMC Microbiology. 2014. Vol. 14, № 66. P. 1–15. DOI: 10.1186/1471-2180-14-66.

Schwartz G.G., Reis I.M. Is cadmium a cause of human pancreatic cancer // Cancer. Epidemiol. Bi-omark. Prev. 2000. Vol. 9. P. 139–145.

Shah S.B. Heavy Metals in the Marine Environment—An Overview // Heavy Metals in Scleractinian Corals / Springer Briefs in Earth Sciences. Springer, Cham. 2021. P. 1–26. DOI: 10.1007/978-3-030-73613-2_1.

Skowron K. et al. Prevalence and distribution of VRE (vancomycin resistant enterococci) and VSE (van-comycin susceptible enterococci) strains in the breeding environment // Annals of Agricultural and Environmen-tal Medicine. 2016. Vol. 23, № 2. P. 231–236. DOI: 10.5604/12321966.1203882.

Somerville G.A., Proctor R.A. At the crossroads of bacteria metabolism and virulence factor synthesis in Staphylococci // Microbiol. Mol. Biol. Rev. 2009. Vol. 73. P. 233–248. DOI: 10.1128/mmbr.00005-09.

Tsai K., Yoon K., Lynn A. ATP-dependent cadmium transport by the cadA cadmium resistance determi-nant in everted membrane vesicles of Bacillus subtilis // J. Bacteriol. 1992. Vol. 174. P. 116–121. DOI: 10.1128/jb.174.1.116-121.1992.

Wiebelhaus N. et al. Protein folding stability changes across the proteome reveal targets of Cu toxicity in E. coli // ACS Chem. Biol. 2021. Vol. 16. P. 214–224. DOI: 10.1021/acschembio.0c00900.

Wu G. et al. Enterococcus faecalis strain LZ-11 isolated from Lanzhou reach of the Yellow River is able to resist and absorb Cadmium // Journal of Applied Microbiology. 2014. Vol. 116. P. 1172–1180. DOI: 10.1111/jam.12460.

Zhang S. et al. Genome sequences of copper resistant and sensitive Enterococcus faecalis strains isolated from copper-fed pigs in Denmark // Standards in Genomic Sciences. 2015. Vol. 35. P. 1–10.

Zhao X. et al. Study on the influence of soil microbial community on the long-term heavy metal pollu-tion of different land use types and depth layers in mine // Ecotoxicol. Environ. Saf. 2019. Vol. 170. P. 218–226. DOI: 10.1016/j.ecoenv.2018.11.136.