Diversity of cultivated bacteria decomposers of monochlorinated biphenyls in the soils of a protected landscape

Main Article Content

Nikolay A. Korolev
Tatyana D. Kir'yanova
Darya O. Egorova

Abstract

This study examined aerobic bacterial strains from the working collection of the laboratory of microbiology of technogenic ecosystems at "IEGM UB RAS," previously isolated from the soils of the specially protected natural area "Osinskaya Lesnaya Dacha". Sixteen strains demonstrated the highest destructive potential concerning biphenyl and its chlorinated derivatives. Based on the analysis of the nucleotide sequence of the 16S rRNA gene, the phylogenetic affiliation of these strains was established. It was shown that the proportion of representatives of the genus Achromobacter accounted for 56.25%, Rhodococcus 18.75%, Pseudomonas 12.5%, and Delftia and Stenotrophomonas both 6.25%. The strains of the genera Achromobacter and Rhodococcus achieved destruction of 2-chloro-, 3-chloro-, and 4-chlorinated biphenyls with efficiencies of 13–100% and 43–100%, respectively. The efficiency of destruction of monochlorobiphenyls for representatives of the genus Pseudomonas was above 80%, except for a 69% decomposition of 4-chlorobiphenyl by the strain Pseudomonas sp. Osa 27. The strain Stenotrophomonas sp. Osa 13 most actively (71%) degraded 4-chlorobiphenyl but exhibited the lowest activity (34%) regarding 3-chlorobiphenyl. The strain Delftia sp. Osa 20 achieved complete destruction of 3-chloro- and 4-chlorobiphenyls but did not transform 2-chlorobiphenyl. Thus, aerobic bacterial cultures isolated from the soils of the protected landscape possess the ability to oxidize complex aromatic compounds that are hazardous to the environment.

Article Details

How to Cite
Korolev Н. А., Kir’yanova Т. Д., & Egorova Д. О. (2024). Diversity of cultivated bacteria decomposers of monochlorinated biphenyls in the soils of a protected landscape. Bulletin of Perm University. Biology, (3), 285‒299. https://doi.org/10.17072/1994-9952-2024-3-285-299
Section
Микробиология
Author Biographies

Nikolay A. Korolev, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, RAS, Perm, Russia

graduate student IEGM UB RAS

Tatyana D. Kir'yanova, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, RAS, Perm, Russia

graduate student IEGM UB RAS

Darya O. Egorova, Institute of Ecology and Genetics of Microorganisms, Ural Branch RAS, Perm, Russia

Doctor of Biology sciences, docent, senior researcher

References

Бузмаков С.А., Гатина Е.Л. Зонирование особо охраняемой природной территории «Осинская лес-ная дача» // Географический вестник. 2009. № 1. С. 51–55. https://cyberleninka.ru/article/n/zonirovanie-osobo-ohranyaemoy-prirodnoy-territorii-osinskaya-lesnaya-dacha (дата обращения: 21.06.2024).

Егорова Д.О. и др. Биоремедиация почвы, длительное время загрязненной дихлордифенилтрихлор-этаном, с использованием аэробного штамма Rhodococcus wratislaviensis CH628 // Почвоведение. 2017. № 10. С. 1262–1269. https://doi.org/10.7868/S0032180X1710001X.

Егорова Д.О. и др. Особенности разложения хлорированных бифенилов штаммом Rhodococcus wratislaviensis КТ112-7 в условиях засоления // Прикладная биохимия и микробиология. 2018. Т. 54, № 3. С. 253–263. https://doi.org/10.7868/S0555109918030042.

Плотникова Е.Г. др. Особенности разложения 4-хлорбифенила и 4 хлорбензойной кислоты штам-мом Rhodococcus ruber P25 // Микробиология. 2012. Т. 81, № 2. С. 159–170. https://doi.org/10.1134/S0026261712020117.

Трегер Ю. СОЗ – стойкие и очень опасные // The Chemical Journal. 2013. № 1. P. 30–34. https://tcj.ru/journal/jan-fev-2013.

Adams C.I.M. et al. Toxicological effects of polychlorinated biphenyls (PCBs) on freshwater turtles in the United States // Chemosphere. 2016. Vol. 154. P. 148–154. https://doi.org/10.1016/j.chemosphere.2016.03.102.

Adebusoye S.A. et al. Characterization of multiple novel aerobic polychlorinated biphenyl (PCB)-utilizing bacterial strains indigenous to contaminated tropical African soils // Biodegradation. 2008. Vol. 19, № 1. P. 145–159. https://doi.org/10.1007/s10532-007-9122-x.

Atago Y. et al. Identification of novel extracellular protein for PCB/biphenyl metabolism in Rhodococcus jostii RHA1 // Bioscience, Biotechnology, and Biochemistry. 2016. Vol. 80, № 5. P. 1012–1019. https://doi.org/10.1080/09168451.2015.1127134.

Bako C.M. et al. Biodegradation of PCB congeners by Paraburkholderia xenovorans LB400 in presence and absence of sediment during lab bioreactor experiments // Environmental Pollution. 2021. Vol. 271. Article 116364. https://doi.org/10.1016/j.envpol.2020.116364.

Bhattacharya A., Khare S.K. Biodegradation of 4-chlorobiphenyl by using induced cells and cell extract of Burkholderia xenovorans // Bioremediation Journal. 2017. Vol. 21. P. 109–118. https://doi.org/10.1080/10889868.2017.1282940.

Cao Y.M. et al. Analysis of PCBs degradation abilities of biphenyl dioxygenase derived from Enterobac-ter sp. LY402 by molecular simulation // New Biotechnology. 2011. Vol. 29, № 1. P. 90–98. https://doi.org/10.1016/j.nbt.2011.08.005.

Colbert C.L. et al. Structural characterization of Pandoraea pnomenusa B-356 biphenyl dioxygenase re-veals features of potent polychlorinated biphenyl-degrading enzymes // PLoS One. 2013. Vol. 8, № 1. Article e52550. https://doi.org/10.1371/journal.pone.0052550.

Devi N.L. Persistent Organic Pollutants (POPs): Environmental risks, toxicological effects, and bioreme-diation for Environmental Safety and Challenges for Future Research // Bioremediation of Industrial Waste for Environmental Safety / G. Saxena, R. Bharagava, eds. Singapore: Springer, 2020. Р. 53–76. https://doi.org/10.1007/978-981-13-1891-7_4.

Egorova D.O. et al. Biodegradability of hydroxylated derivatives of commercial polychlorobiphenyls mixtures by Rhodococcus-strains // Journal of Hazardous Materials. 2020. Vol. 400. Article 123328. https://doi.org/10.1016/j.jhazmat.2020.123328.

Final act of the Conference of Plenipotentiaries on the Stockholm, 22–23 May // UNEP / POPS/CONF/4. United Nations Environment Programme. Geneva, 2001. 44 p.

Flavia A. et al. Degradation of atrazine by Pseudomonas sp. and Achromobacter sp. isolated from Bra-zilian agricultural soil // International Biodeterioration and Biodegradation. 2018. Vol. 130. P. 17–22. https://doi.org/10.1016/j.ibiod.2018.03.011.

Furukawa K. Biochemical and genetic bases of microbial degradation of polychlorinated biphenyls (PCBs) // The Journal of General and Applied Microbiology. 2000. Vol. 46, № 6. P. 283–296. https://doi.org/10.2323/jgam.46.283.

Hara T., Takatsuka Y. Aerobic polychlorinated biphenyl-degrading bacteria isolated from the Tohoku region of Japan are not regionally endemic // Canadian Journal of Microbiology. 2022. Vol. 68, № 3. P. 191–202. doi: 10.1139/cjm-2021-0056.

Hatamian-Zarmi A. et al. Extensive biodegradation of highly chlorinated biphenyl and Aroclor 1242 by Pseudomonas aeruginosa TMU56 isolated from contaminated soils // International Biodeterioration and Bio-degradation. 2009. Vol. 63, № 6. P. 788–794. https://doi.org/10.1016/j.ibiod.2009.06.009.

Hernandez B.S. et al. Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil // Biodegradation. 1997. Vol. 8, № 3. P. 153–158. https://doi.org/10.1023/A:1008255218432.

Hong Q. et al. Isolation of a biphenyl-degrading bacterium, Achromobacter sp. BP3, and cloning of the bph gene cluster // International Biodeterioration and Biodegradation. 2009. Vol. 63, № 4. P. 365–370. https://doi.org/10.1016/j.ibiod.2008.10.009.

Hou L.H. et al. Phylogenetic characterization of several para‐ and meta‐PCB dechlorinating Clostridium species: 16s rDNA sequence analyses // Letters in Applied Microbiology. 2000. Vol. 30, № 3. P. 238–243. https://doi.org/10.1046/j.1472-765x.2000.00709.x.

Hu J. et al. Sphingobium fuliginis HC3: a novel and robust isolated biphenyl-and polychlorinated bi-phenyls-degrading bacterium without dead-end intermediates accumulation // PloS one. 2015. Vol. 10, № 4. Article e0122740. https://doi.org/10.1371/journal.pone.0122740.

Ilori M.O. et al. Aerobic mineralization of 4,4’-dichlorobiphqnyl and 4 chlorobenzoic acid by a novel natural bacterial strain that grows poorly on benzoate and biphenyl // World J. Microbiol. Biotechnol. 2008a. Vol. 24. P. 1259–1265. https://doi.org/10.1007s11274-007-9597-y

Ilori M.O. et al. Degradation and mineralization of 2-chloro-, 3-chloro-and 4 chlorobiphenylby a newly characterized natural bacterial strain isolated from an electrical transformer fluid-contaminated soil // Journal of Environmental Sciences. 2008b. Vol. 20, № 10. P. 1250–1257. https://doi.org/10.1016/s1001-0742(08)62217-2.

Ilori M.O. et al. Catabolic plasmid specifying polychlorinated biphenyl degradation in Cupriavidus sp. strain SK‐4: Mobilization and expression in a pseudomonad // Journal of Basic Microbiology. 2015. Vol. 55, № 3. P. 338–345. https://doi.org/10.1002/jobm.201200807.

Jia L.Y. et al. Isolation and characterization of comprehensive polychlorinated biphenyl degrading bac-terium, Enterobacter sp. LY402 // J. Microbiol. Biotechnol. 2008. Vol. 18, № 5. P. 952–957. PMID: 18633297.

Kim S., Picardal F.W. A novel bacterium that utilizes monochlorobiphenyls and 4 chlorobenzoate as growth substrates // FEMS Microbiology Letters. 2000. Vol. 185, № 2. P. 225–229. https://doi.org/10.1111/j.1574-6968.2000.tb09066.x.

Kour D. et al. Gene manipulation and regulation of catabolic genes for biodegradation of biphenyl com-pounds // In New and Future Developments in Microbial Biotechnology and Bioengineering. 2019. P. 1–23. https://doi.org/10.1016/B978-0-444-63503-7.00001-2.

Liang Y. et al. Potential for polychlorinated biphenyl biodegradation in sediments from Indiana Harbor and Ship Canal // International Biodeterioration and Biodegradation. 2014. Vol. 89. P. 50–57. https://doi.org/10.1016/j.ibiod.2014.01.005.

Masai E. et al. Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1 // Appl. Environ. Microbiol. 1995. Vol. 61, № 6. P. 2079–2085. https://doi.org/10.1128/aem.61.6.2079-2085.1995.

Müller M.H.B. et al. Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in human breast milk and associated health risks to nursing infants in Northern Tanzania // Environmental research. 2017. Vol. 154. P. 425–434. https://doi.org/10.1016/j.envres.2017.01.031.

Nam I.H. et al. Biodegradation of biphenyl and 2-chlorobiphenyl by a Pseudomonas sp. KM-04 isolated from PCBs-contaminated coal mine soil /// Bulletin of Environmental Contamination and Toxicology. 2014. Vol. 93, № 1. P. 89–94. https://doi.org/10.1007/s00128-014-1286-6.

Negret-Bolagay D. et al. Persistent organic pollutants: the trade-off between potential risks and sustaina-ble remediation methods // Journal of environmental Management. 2021. Vol. 300. Article 113737. https://doi.org/10.1016/j.jenvman.2021.113737.

Park S.H. et al. Adaptive and cross-protective responses of Pseudomonas sp. DJ-12 to several aromatics and other stress shocks // Current Microbiology. 2001. Vol. 43, № 3. P. 176–181. https://doi.org/10.1007/s002840010283.

Pieper D.H., Seeger M. Bacterial metabolism of polychlorinated biphenyls // Journal of Molecular Micro-biology and Biotechnology. 2008. Vol. 15, № 2–3. P. 121–138. https://doi.org/10.1159/000121325.

Ponce B.L. et al. Antioxidant compounds improved PCB-degradation by Burkholderia xenovorans strain LB400 // Enzyme and Microbial Technology. 2011. Vol. 49, № 6–7. P. 509–516. https://doi.org/10.1016/j.enzmictec.2011.04.021.

Reddy A.V.B. et al. Polychlorinated biphenyls (PCBs) in the environment: recent updates on sampling, pretreatment, cleanup technologies and their analysis // Chemical Engineering Journal. 2019. Vol. 358. P. 1186–1207. https://doi.org/10.1016/j.cej.2018.09.205.

Sakai M. et al. 2-Hydroxypenta-2, 4-dienoate metabolic pathway genes in a strong polychlorinated bi-phenyl degrader, Rhodococcus sp. strain RHA1 // Appl. Environ. Microbiol. 2003. Vol. 69, № 1. P. 427–433. https://doi.org/10.1128/AEM.69.1.427-433.2003.

Shuai J. et al. Regional analysis of potential polychlorinated biphenyl degrading bacterial strains from China // Brazilian Journal of Microbiology. 2016. Vol. 47, № 3. P. 536–541. https://doi.org/10.1016/j.bjm.2014.12.001.

Somaraja P.K. et al. Molecular characterization of 2-chlorobiphenyl degrading Stenotrophomonas maltophilia GS-103 // Bulletin of Environmental Contamination and Toxicology. 2013. Vol. 91, № 2. P. 148–153. https://doi.org/10.1007/s00128-013-1044-1.

Tarlachkov S.V. et al. Draft genome sequence of glyphosate-degrading Achromobacter insolitus strain Kg 19 (VKM B-3295), isolated from agricultural soil // Microbiology Resource Announcements. 2020. Vol. 9, № 17. Article e00284-20. doi: 10.1128/MRA.00284-20.

Warenik-Bany M. et al. Impact of environmental pollution on PCDD/F and PCB bioaccumulation in game animals // Environmental Pollution. 2019. Vol. 255. Article 113159 https://doi.org/10.1016/j.envpol.2019.113159.

Witzig R. et al. Assessment of toluene/biphenyl dioxygenase gene diversity in benzene-polluted soils: links between benzene biodegradation and genes similar to those encoding isopropylbenzene dioxygenases // Appl. Environ. Microbiol. 2006. Vol. 72, № 5. P. 3504–3514. https://doi.org/10.1128/AEM.72.5.3504-3514.2006.

Xing Z. et al. Degradation Mechanism of 4-Chlorobiphenyl by Consortium of Pseudomonas sp. Strain CB-3 and Comamonas sp. Strain CD-2 // Current Microbiology. 2020. Vol. 77. P. 15–23. https://doi.org/10.1007/s00284-019-01791-9A.

Xu L. et al. Congener selectivity during polychlorinated biphenyls degradation by Enterobacter sp. LY402 // Current Microbiology. 2011. Vol. 62, № 3. P. 784–789. https://doi.org/10.1007/s00284-010-9792-1.

Zhang P. et al. Distribution and transfer pattern of polychlorinated biphenyls (PCBs) among the selected environmental media of Ny-Alesund, the Arctic: as a case study // Marine Pollution Bulletin. 2014. Vol. 89, № 1–2. P. 267–275.

Zhu L. et al. Degradation mechanism of biphenyl and 4,4’-dichlorobiphenyl cis-dihydroxylation by non-heme 2,3 dioxygenases BphA: A QM/MM approach // Chemosphere. 2020. Vol. 247. Article125844. https://doi.org/10.1016/j.chemosphere.2020.125844.