Analysis of genetic diversity, structure and differentiation of Pinus sylvestris L. populations in the Urals

Main Article Content

Nikita V. Chertov

Abstract

The article is devoted to a molecular genetic analysis of nine populations of Pinus sylvestris L. in the Urals was carried out using ISSR (Inter Simple Sequence Repeats) DNA polymorphism analysis. 141 DNA fragments were identified, of which 8 (5.67%) are unique. The studied populations of Scots pine revealed an average level of genetic diversity (P95 = 0.886; I = 0.224; HE = 0.141; ne = 1.301). It was revealed that two populations from the southern part of the Southern Urals are characterized by reduced genetic diversity, these are populations from Salavat (P95 = 0.746; I = 0.142; HE = 0.091; ne = 1.153) and Mechetlinsky (P95 = 0.702; I = 0.117; HE = 0.071; ne = 1.106) districts of the Republic of Bashkortostan. Analysis of the genetic structure showed that the studied populations are divided into 4 clusters, generally corresponding to their geographical location. It was found that the studied populations are characterized by an average degree of differentiation (GST = 0.315). Correlation analysis revealed an average positive correlation between geographic and genetic distances (R2 = 0.358). The results of the study can be used to draw up programs for the restoration and efficient use of forest genetic resources.

Article Details

How to Cite
Chertov Н. В. (2024). Analysis of genetic diversity, structure and differentiation of Pinus sylvestris L. populations in the Urals. Bulletin of Perm University. Biology, (2), 221–230. https://doi.org/10.17072/1994-9952-2024-2-221-230
Section
Генетика
Author Biography

Nikita V. Chertov, Perm State University, Perm, Russia

Assistant of the Department of Botany and Plant Genetics

References

Боронникова С.В. и др. Молекулярно-генетическая идентификация в лесном хозяйстве с использо-ванием геномных технологий // Бюллетень науки и практики. 2018. Т. 4, № 7. С. 26–33.

Видякин А.И. и др. Генетическая изменчивость, структура и дифференциация популяций сосны обыкновенной (Pinus sylvestris L.) на северо-востоке Русской равнины по данным молекулярно-генетического анализа // Генетика. 2015. Т. 51, № 12. С. 1401–1409.

Видякин А.И. и др. Распространение гаплотипов митохондриальной ДНК в популяциях сосны обыкновенной (Pinus sylvestris L.) на севере Европейской России // Генетика. 2012. Т. 48, № 12. С. 1440–1444.

Потокина Е. К., Александрова Т.Г. Коэффициенты генетической оригинальности образцов коллек-ции вики посевной (Vicia sativa L.) по результатам молекулярного маркирования // Генетика. 2008. Т. 44, № 11. С. 1508–1516

Пришнивская Я.В. и др. Внутривидовое генетическое разнообразие популяций двух видов древес-ных растений Пермского края // Бюллетень науки и практики. 2019. Т. 5, № 4. С. 58–68.

Рябухина М.В. и др. Генетическое разнообразие популяций сосны обыкновенной Pinus sylvestris L. // Теоретическая и прикладная экология. 2019. № 3. С. 66–71.

Санников С.Н., Петрова И.В. Филогеногеография и генотаксономия популяций вида Pinus sylvestris L. // Экология. 2012. № 4. С. 252–260.

Санников С.Н. и др. Выявление системы плейстоценовых рефугиумов Pinus sylvestris L. в южной маргинальной зоне ареала // Экология. 2014. № 3. С. 174–181.

Санников С.Н. и др. Поиск и выявление системы плейстоценовых рефугиумов вида Pinus sylvestris L. // Экология. 2020. № 3. С. 181–189.

Сбоева Я.В. Оценка состояния генофондов популяций Pinus sylvestris L. на востоке и северо-востоке Восточно-Европейской равнины // Вестник Пермского университета. Сер. Биология. 2023. Вып. 4. С. 375–384.

Чертов Н.В. и др. Молекулярно-генетическая идентификация популяций Pinus sylvestris L. и Larix sibirica Ledeb. в Пермском крае с использованием SNP-маркеров // Бюллетень науки и практики. 2020. Т. 6, № 12. С. 14–22.Art. 1278.

Dering M. et al. Tertiary remnants and Holocene colonizers: Genetic structure and phylogeography of Scots pine reveal higher genetic diversity in young boreal than in relict Mediterranean populations and a dual colonization of Fennoscandia // Diversity and distributions. 2017. Vol. 23, № 5. P. 540–555.

Floran V., Sestras R.E., Gil M.R. Organelle genetic diversity and phylogeography of Scots pine (Pinus syl-vestris L.) // Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2011. Vol. 39, № 1. P. 317–322.

Frankham R. How closely does genetic diversity in finite populations conform to predictions of neutral theory? Large deficits in regions of low recombination // Heredity. 2012. Vol. 108, № 3. P. 167–178.

Hammer Ø., Harper D.A.T., Paul D.R. Past: Paleontological statistics software package for education and data analysis // Palaeontol. Electron. 2001. Vol. 4, № 1. P. 1–9.

Hebda A., Wójkiewicz B., Wachowiak W. Genetic characteristics of Scots pine in Poland and reference populations based on nuclear and chloroplast microsatellite markers // Silva Fennica. 2017. Vol. 51, № 2. P. 1–17.

Högberg P. et al. Large-scale forest girdling shows that current photosynthesis drives soil respiration // Na-ture. 2001. Vol. 411, № 683. P. 789–792.

Kalendar R., Muterko A., Boronnikova S. Retrotransposable elements: DNA fingerprinting and the as-sessment of genetic diversity // Methods Mol. Biol. 2021. Vol. 2222. P. 263–286.

Kalendar R. et al. Palindromic sequence-targeted (PST) PCR: A rapid and efficient method for high-throughput gene characterization and genome walking // Sci. Rep. 2019. Vol. 9, № 1. Art. 17707.

Kavaliauskas D., Danusevičius D., Baliuckas V. New insight into genetic structure and diversity of Scots pine (Pinus sylvestris L.) populations in Lithuania based on nuclear, chloroplast and mitochondrial DNA mark-ers // Forests. 2022. Vol. 13. Art. 1179.

Khanova E. et al. Genetic and selection assessment of the Scots pine (Pinus sylvestris L.) in forest seed orchards // Wood Res. 2020. Vol. 65. P. 283–292.

Kumar S. et al. Mega x: Molecular evolutionary genetics analysis across computing platforms // Mol. Bi-ol. Evol. 2018. Vol. 35, № 6. P. 1547–1549.

Lindén A. et al. Contrasting effects of increased carbon input on boreal SOM decomposition with and without presence of living root system of Pinus sylvestris L. // Plant and soil. 2014. Vol. 377. P. 145–158.

Liu X. et al. Abietic acid suppresses non-small-cell lung cancer cell growth via blocking IKKβ/NF-κB sig-naling // OncoTargets and therapy. 2019. P. 4825–4837.

Nei M. Molecular population genetics and evolution. Amsterdam: North-Holland Publishing Company, 1975. 228 p.

Nei M., Li W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases // Proc. Natl. Acad. Sci. USA. 1979. Vol. 76, № 10. P. 5269–5273.

O’Grady J.J. et al. Realistic levels of inbreeding depression strongly affect extinction risk in wild popula-tions // Biological conservation. 2006. Vol. 133, № 1. P. 42–51.

Pan Y. et al. A large and persistent carbon sink in the world’s forests // Science. 2011. Vol. 333. P. 988–993.

Pazouki L. et al. Large within-population genetic diversity of the widespread conifer Pinus sylvestris at its soil fertility limit characterized by nuclear and chloroplast microsatellite markers // European journal of forest research. 2016. Vol. 135. P. 161–177.

Peakall R.O.D., Smouse P.E. Genalex 6: Genetic analysis in Excel. Population genetic software for teach-ing and research // Mol. Ecol. Notes. 2006. Vol. 6, № 1. P. 288–295.

Rogers S.O., Bendich A.J. Extraction of DNA from milligram amounts of fresh, herbarium and mummi-fied plant tissues // Plant molecular biology. 1985. Vol. 5, № 2. P. 69–76.

Sboeva Y. et al. Genetic Diversity, Structure, and Differentiation of Pinus sylvestris L. Populations in the East European Plain and the Middle Urals // Forests. 2022. Vol. 13, № 11. Art. 1798.

Spielman D., Brook B.W., Frankham R. Most species are not driven to extinction before genetic factors impact them // Proceedings of the National Academy of Sciences. 2004. Vol. 101, № 42. P. 15261–15264.

Tóth E.G. et al. High genetic diversity and distinct origin of recently fragmented Scots pine (Pinus syl-vestris L.) populations along the Carpathians and the Pannonian Basin // Tree Genetics & Genomes. 2017. Vol. 13. P. 1–2.

Vasilyeva Y. et al. Genetic Structure, Differentiation and Originality of Pinus sylvestris L. Populations in the East of the East European Plain // Forests. 2021. Vol. 12, № 8. Art. 999.

Yeh F.C. et al. POPGENE, the Microsoft Windows-based user-friendly software for population genetic analysis of co-dominant and dominant markers and quantitative traits // Dept. Renewable Resources, Universi-ty of Alberta, Edmonton, Canada. 1996. Vol. 238. P. 1–29.

Zietkiewicz E., Rafalski A., Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification // Genomics. 1994. Vol. 20, № 2. P. 176–183.