MicroRNA expression profiles in blood leukocytes as autism spectrum disorder severity markers in children

Main Article Content

Anna S. Alekseeva
Yuliya Yu. Filippova
Aleksandra L. Burmistrova

Abstract

Autism spectrum disorders are a heterogeneous group of neurodevelopmental disorders with unknown etiology. Immune dysfunction may be involved in the etiology and pathogenesis of autism. One of the regulators of interactions between the nervous and immune systems are microRNAs, which can be considered as key players in pathogenesis and diagnostic biomarkers. The present study is devoted to a search for the relationship between leukocyte expression of microRNAs: microRNA-155, microRNA-146a, microRNA-124, microRNA-21 and microRNA-9, and the concentration of cytokines in the blood plasma of autistic children, which was carried out to detect biological markers of the disease and its severity. It was found that in children with mild autism, the expression levels of the studied microRNAs in blood leukocytes did not differ from similar values in children with normotypical development. In leukocytes of children with severe autism spectrum disorders, the expression of microRNA-124 and microRNA-146a is reduced compared to normotypical children, and microRNA-146a is reduced compared to children with mild autism.  Two significant positive correlations between microRNA-9/IFNg and microRNA-124/TNFa against the background of a negative interaction between microRNA-155 and TNFa were identified in the group of children with mild autism.  Four significant negative relationships between microRNA-9/IFNg; microRNA-146a/IFNg; miR-146a/IL-6 and miR-155/IL-10 were found in children with severe autism spectrum disorders. The expression level of microRNA-146a in leukocytes less than 0.0035 с.u. with 86.7% sensitivity and 89.6% specificity may indicate severe autism in children. Thus, we have identified disturbances in the expression levels of important negative regulators of inflammation and participants in neuro-immune interactions – microRNA-146a and microRNA-124.

Article Details

How to Cite
Alekseeva А. С. ., Filippova Ю. Ю. ., & Burmistrova А. Л. . (2024). MicroRNA expression profiles in blood leukocytes as autism spectrum disorder severity markers in children. Bulletin of Perm University. Biology, (3), 335‒343. https://doi.org/10.17072/1994-9952-2024-3-335-343
Section
Иммунология
Author Biographies

Anna S. Alekseeva, Chelyabinsk State University, Chelyabinsk, Russia

Assistant, Department of Microbiology, Immunology and General Biology, Faculty of Biology «Chelyabinsk State University»

Yuliya Yu. Filippova, Chelyabinsk State University, Chelyabinsk, Russia

PhD (Biology), Professor, Department of Microbiology, Immunology and General biology, Faculty of Biology, Chelyabinsk State University

Aleksandra L. Burmistrova, Chelyabinsk State University, Chelyabinsk, Russia

PhD, MD (Medicine), Professor, Head, Department of Microbiology, Immunology and General Biology, Faculty of Biology, Chelyabinsk State University

References

Белокоскова С.Г. и др. Содержание BDNF и активность каталазы в крови детей с расстройствами аутистического спектра // Медицинский академический журнал. 2023. Т. 23, № 2. C. 119–128. doi: 10.17816/MAJ112295.

Бурмистрова А.Л. и др. Лейкоцитарная сигнатура микроРНК в контексте хронического системного воспаления при сосудистой деменции // Российский иммунологический журнал. 2022. Т. 25, № 4. C. 399–404. doi: 10.46235/1028-7221-1187-MSO.

Филиппова Ю.Ю., Алексеева А.С., Бурмистрова А.Л. Экспрессия цитокинов лейкоцитами в ассоци-ации с тяжестью аутизма у детей // Российский иммунологический журнал. 2023. Т. 26, № 4. C. 593–598. doi: 10.46235/1028-7221-13911-LCE.

Филиппова Ю.Ю. и др. Цитокины и нейротрофические факторы в оценке степени тяжести аутизма у детей // Клиническая лабораторная диагностика. 2022. Т. 67, № 11. С. 647–651.

Amado T. et al. Cross-regulation between cytokine and microRNA pathways in T cells // European journal of immunology. 2015. Vol. 45, № 6. P. 1584–1595. DOI: 10.1002/eji.201545487.

Bilbo S.D. Early-life programming of later-life brain and behavior: a critical role for the immune system // Frontiers in behavioral neuroscience. 2009. Vol. 3. Art. 14. DOI: 10.3389/neuro.08.014.2009.

Brown A.S. et al. Elevated maternal c-reactive protein and autism in a national birth cohort // Molecular psychiatry. 2014. Vol. 19. P. 259–264. DOI: 10.1038/mp.2012.19.

Eissa N. et al. Role of Neuroinflammation in Autism Spectrum Disorder and the Emergence of Brain His-taminergic System. Lessons Also for BPSD? // Frontiers in pharmacology. 2020. Vol. 11. Art. 886. DOI: 10.3389/fphar.2020.00886.

Follert P., Cremer H., Béclin C. MicroRNAs in brain development and function: a matter of flexibility and stability // Frontiers in molecular neuroscience. 2014. Vol. 7. 7:5. DOI: 10.3389/fnmol.2014.00005.

Han D. et al. MiR-124 and the Underlying Therapeutic Promise of Neurodegenerative Disorders // Fron-tiers in pharmacology. 2020. Vol. 10. Art. 1555. DOI: 10.3389/fphar.2019.01555.

Hu C.C. et al. Alterations in plasma cytokine levels in Chinese children with autism spectrum disorder // Autism research. 2018. Vol. 11. P. 989–999. DOI: 10.1002/aur.1940.

Li S., Lei Z., Sun T. The role of microRNAs in neurodegenerative diseases: a review // Cell biology and toxicology. 2023. Vol. 39, № 1. P. 53–83. DOI: 10.1007/s10565-022-09761-x.

Liu X. et al. Preeclampsia promotes autism in offspring via maternal inflammation and fetal NFκB sig-naling // Life science alliance. 2023. Vol. 6, № 8. Art. e202301957. DOI: 10.26508/lsa.202301957.

Liu Y.X. et al. MiR-124-3p/B4GALT1 axis plays an important role in SOCS3-regulated growth and chemo-sensitivity of CML // Journal of hematology & oncology. 2016. Vol. 9, № 1. Art. 69. DOI: 10.1186/s13045-016-0300-3.

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method // Methods. 2001. Vol. 25, № 4. P. 402–408. DOI: 10.1006/meth.2001.1262.

Moaaz M. et al. Th17/Treg cells imbalance and their related cytokines (IL-17, IL-10 and TGF-β) in chil-dren with autism spectrum disorder // Journal of neuroimmunology. 2019. Vol. 337. Art. 577071. DOI: 10.1016/j.jneuroim.2019.577071.

Olivieri F. et al. MiR-21 and miR-146a: The microRNAs of inflammaging and age-related diseases // Ageing research reviews. 2021. Vol. 70. Art. 101374. DOI: 10.1016/j.arr.2021.101374.

Oxenkrug G. Interferon-gamma - Inducible Inflammation: Contribution to Aging and Aging-Associated Psychiatric Disorders // Aging and disease. 2011. Vol. 2, № 6. P. 474–486. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295064/ (дата обращения: 27.03.2024)

Plotnikova O., Baranova A., Skoblov M. Comprehensive Analysis of Human microRNA–mRNA In-teractome // Frontiers in genetics. 2019. Vol. 10. Art. 933. DOI: 10.3389/fgene.2019.00933.

Powdrill M.H. et al. The role of microRNAs in metabolic interactions between viruses and their hosts // Current opinion in virology. 2016. Vol. 19. P. 71–76. DOI: 10.1016/j.coviro.2016.07.005.

Qin Z. et al. MiRNA-124 in Immune System and Immune Disorders // Frontiers in immunology. 2016. Vol. 7. Art. 406. DOI: 10.3389/fimmu.2016.00406.

Saba R., Sorensen D.L., Booth S.A. MicroRNA-146a: A Dominant, Negative Regulator of the Innate Immune Response // Frontiers in immunology. 2014. Vol. 5. Art. 578. DOI: 10.3389/fimmu.2014.00578.

Slota J.A., Booth S.A. MicroRNAs in neuroinflammation: implications in disease pathogenesis, bi-omarker discovery and therapeutic applications // Noncoding RNA. 2019. Vol. 5, № 2. Art. 35. DOI: 10.3390/ncrna5020035.

Soreq H., Wolf Y. NeurimmiRs: microRNAs in the neuroimmune interface // Trends in molecular medi-cine. 2011. Vol. 17, № 10. P. 548–555. DOI: 10.1016/j.molmed.2011.06.009.

Taganov K.D. et al. NF-kB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses // Proceedings of the National Academy of Sciences of the United States of America. 2006. Vol. 103, № 33. P. 12481–12486. DOI: 10.1073/pnas.0605298103.

Tavakolian S. et al. Evaluation of microRNA-9 and -192 expression levels as biomarkers in patients suf-fering from breast cancer // Biomedical reports. 2020. Vol. 12, № 1, P. 30–34. DOI: 10.3892/br.2019.1257.

Xu X.M. et al. Expression of miR-21, miR-31, miR-96 and miR-135b is correlated with the clinical pa-rameters of colorectal cancer // Oncology letters. 2012. Vol. 4, № 2. P. 339–345. DOI: 10.3892/ol.2012.714.

Yang L.H. et al. Universal stem-loop primer method for screening and quantification of microRNA // PLoS One. 2014. Vol. 9, № 12. Art. e115293. DOI: 10.1371/journal.pone.0115293.

Zhang R.X. et al. Both plasma and tumor tissue miR-146a high expression correlates with prolonged overall survival of surgical patients with intrahepatic cholangiocarcinoma // Medicine (Baltimore). 2017. Vol. 96, № 44. Art. e8267. DOI: 10.1097/MD.0000000000008267.