Genetic diversity of Russian and European individuals Dryopteris expansa (C. Presl) Fraser-Jenkins et Jeremy (Dryopteridaceae)

Main Article Content

Sergey Yu. Malyh

Abstract

The results of molecular genetic analysis (ISSR-PCR) of 112 Dryopteris expansa (C. Presl) Fraser-Jenkins et Jermy specimens collected in Russia and Europe are presented. DNA was extracted using fresh material and material from the herbarium of the South Siberian Botanical Garden (ALTB): the collection of fresh material was carried out during expeditions (40 samples from Perm Krai, Moscow, Smolensk and Tver regions), the selection of material from the herbarium was carried out by removing a part of the dried frond (72 samples from various regions of Russia and Europe). An analysis of DNA polymorphism and the genetic structure of the studied groups with the calculation of the proportion (P95) of polymorphic loci, the absolute (na) number of alleles, the effective (ne) number of alleles, the expected (HE) heterozygosity and the information-entropy measure (I) of Shannon was carried out using the POPGENE 1.31 program. To describe the genetic structure of the studied groups, the following parameters were used: the expected proportion of heterozygous genotypes (HT) in the entire group as a measure of its overall diversity; the expected proportion of heterozygous genotypes in a subgroup (HS) as a measure of its internal diversity; the proportion of intergroup genetic diversity in the total diversity or the subdivision index (GST). In addition to this, the AMOVA package was used with the calculation of the subdivision index of groups using 1000 rounds of permutations. Based on a comparison of the indicators of the Shannon information measure (I), Nei fixation index (FST), as well as intra- and intergroup variability based on the results of the analysis of molecular variants (AMOVA) obtained for D. expansa with similar indicators given for D. fragrans (L.) Schott, a conclusion is made about the inexpediency of dividing D. expansa s.l. into two independent species – D. expansa s. str. and D. assimilis S. Walker. The indicators of all indices and calculated values given in the publication can be used as a basis for comparison in other works devoted to the genetic variability of species of the genus Dryopteris in Russia.

Article Details

How to Cite
Malyh С. Ю. (2023). Genetic diversity of Russian and European individuals Dryopteris expansa (C. Presl) Fraser-Jenkins et Jeremy (Dryopteridaceae). Bulletin of Perm University. Biology, (3), 259–273. https://doi.org/10.17072/1994-9952-2023-3-259-273
Section
Генетика
Author Biography

Sergey Yu. Malyh, Gymnasium № 31, Perm, Russia

Biology teacher

References

Грушецкая З.Е. и др. Использование ISSR-анализа для изучения внутри- и межвидового генетического полиморфизма различных таксонов высших растений // Вестник БГУ. Сер 2. 2013. № 3. С. 50–56.

Гуреева И.И., Феоктистов Д.С., Кузнецов А.А. Опыт применения молекулярного анализа в демографических исследованиях папоротников // Систематические и флористические исследования Северной Евразии. М., 2018. Т. 1. С. 172–175.

Конспект флоры Восточной Европы. / под ред. Н.Н. Цвелева. М.; СПб.: Т-во науч. изд. КМК, 2012. Т. 1. 630 с.

Кузнецов В.М. Методы Нея для анализа генетических различий между популяциями // Проблемы биологии продуктивных животных. 2020. № 1. С. 91–110.

Кузнецов В.М. Информационно-энтропийный подход к анализу генетического разнообразия популяций (аналитический обзор) // Аграрная наука Евро-Северо-Востока. 2022. Т. 23, № 2. С. 159–173.

Малых С.Ю. Род Dryopteris Adans. в Европейской части России // Вестник Пермского университета. Сер. Биология. 2022. Вып. 3. С. 189‒200.

Светлакова Т.Н. и др. Генетическая дифференциация популяций Populus tremula L. в Пермском крае на основании полиморфизма ISSR-маркеров // Аграрный вестник Урала. 2012. Вып. 3. С. 11–13.

Цвелев Н.Н. О роде Dryopteris Adans. (Dryopteridaceae) в Восточной Европе // Новости систематики высших растений. 2003. Т. 35. С. 7–20.

Шмаков А.И. Определитель папоротников России. 2-е изд., перераб. и допол. Барнаул: ARTИКА, 2009. 126 с.

Юрцев Б.А. Популяции растений как объект геоботаники, флористики, ботанической географии // Ботанический журнал. 1987. Т. 72, № 5. С. 581–588.

Animasaun D.A. et al. Polymorphism and genetic diversity assessment of some ornamental ferns by mi-crosatellite (ISSR) markers // J. Appl. Hortic. 2018. Vol. 20, № 3. P. 237–241.

Bouchard J.R. et al. Contrasting patterns of genetic variation in central and peripheral populations of Dryopteris fragrans (Fragrant wood fern) and implications for colonization dynamics and conservation // Inter-national Journal of Plant Sciences. 2017. Vol. 178, № 8. P. 607–617.

Bujnoch W. A contribution to the plylogeny of Dryopteris remota by genotyping of a fragment of the nuclear PgiC gene // Fern. Gaz. 2015. Vol. 20, Part 2. P. 79–89.

Camacho F.J., Liston A. Population structure and genetic diversity of Botrychium pumicola (Ophioglos-saceae) based on inter-simple sequence repeats (ISSR) // Am. J. Bot. 2001. Vol. 88. P. 1065–1070.

Crabbe J.A., Jermy A.C., Walker S. Distribution of Dryopteris assimilis S. Walker in Britain // Watsonia. 1970. Vol. 8. P. 3–15.

Döpp W., Gätzi W. Der Bastard zwischen tetraploider und diploider Dryopteris dilatata // Ber. Schweiz. Bot. Ges. 1964. Vol. 74. P. 45–53.

de Groot G.A. et al. Diverse spore rains and limited local exchange shape fern genetic diversity in a re-cently created habitat colonized by long-distance dispersal // Ann. Bot. 2012. Vol. 109. P. 965–978.

Dong Y.-H. et al. Genetic variation in the endangered aquatic fern Ceratopteris thalictroides (Parkeria-ceae) in China: implications from RAPD and ISSR data // Bot. J. Linn. Soc. 2008. Vol. 157. P. 657–671.

Dong Y.-H., Gituru R.W., Wang Q.-F. Genetic variations and gene flow in the endangered aquatic fern Ceratopteris pteridoides in China, and conservation implications // Ann. Bot. Fennici. 2010. Vol. 47. P. 34–44.

Ellstrand N.C., Elam D.R. Population genetic consequences of small population size: implications for plant conservation // Annu. Rev. Ecol. Syst. 1993. Vol. 24. P. 217–242.

Excoffier L., Smouse P.E., Quattro J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data // Genetics. 1992. Vol. 131, № 2. P. 479–491.

Fraser-Jenkins C.R., Jermy A.C. Nomenclatural notes on Dryopteris: 2 // Fern Gaz. 1977. Vol. 11, № 5. P. 338–340.

Holsinger K.E., Weir B.S. Genetics in geographically structured populations: defining, estimating and in-terpreting FST // Nat. Rev. Genet. 2009. Vol. 10. P. 639–650.

Kimura M., Crow J.F. The number of alleles that can be maintained in a finite population // Genetics. 1964. Vol. 49, № 2. P. 725–738.

Leimu R. et al. How general are positive relationships between plant population size, fitness and genetic variation? // J. Ecol. 2006. Vol. 94. P. 942–952.

Lewontin R.C. The apportionment of human diversity // Ev. Biol. 1972. Vol. 6. P. 381–398.

Manton I. Problems of Cytology and Evolution in the Pteridophyta. Cambridge: Cambridge University Press, 1950. 316 p.

Nannfeldt J.A. Dryopteris dilatata och Dr. assimilis i Sverige // Bot. Not. 1966. Vol. 119. P. 136–152.

Nei M. Genetic distance between populations // Amer. Naturalist. 1972. Vol. 106. P. 283–292.

Nei M. Molecular population genetics and evolution. Amsterdam, Oxford: North-Holland Publishing Company, 1975. 288 p.

Nei M. Molecular Evolutionary Genetics. New York: Columbia University Press, 1987. 615 p.

Nei M., Li W-H. Mathematical model for studying genetic variation in terms restriction endonucleases // PNAS, Proc. Natl. Acad. Sci. USA. 1979. Vol. 76. P. 5269–5273.

Peakall R. GenAlEx6: Genetic analysis in Excel. Population genetic software for teaching and research // Mol. Ecol. Not. 2005. Vol. 6, № 1. P. 288–295.

Perrie L.R. et al. Tasmanian and Victorian populations of the fern Asplenium hookerianum result from independent dispersal from New Zealand // Aust. Syst. Bot. 2010. Vol. 23, № 6. P. 387–392.

Rogers S.O., Bendich A.J. Extraction of DNA from milligram amounts of fresh, herbarium and mummi-fied plant tissues // Plant Mol. Biol. 1985. Vol. 5, № 2. P. 69–76.

Sessa E.B., Zimmer E.A., Givnish T.J. Unraveling reticulate evolution in North American Dryopteris (Dryopteridaceae) // BMC Evol. Biol. 2012. Vol. 12. P. 104–127.

Schneller J.J., Krattinger K. Genetic composition of Swiss and Austrian members of the apogamous Dry-opteris affinis complex (Dryopteridaceae, Polypodiopsida) based on ISSR markers // Plant Syst. Evol. 2010. Vol. 286. P. 1–6.

Simon T., Vida G. Neue Angaben zur Verbreitung der Dryopteris assimilis S. Walker in Europa // Annls Univ. Scient. bpest. Rolando Eötvös, Sect. Biol. 1966. Vol. 8. P. 275–284.

Walker S. Cytogenetic studies in the Dryopteris spinulosa complex I // Watsonia. 1955. Vol. 3. P. 193–209.

Walker S. Cytogenetic studies in the Dryopteris spinulosa complex II // Amer. Journ. Bot. 1961. Vol. 48. P. 607–614.

Walker S., Jermy A.C. Dryopteris assimilis S. Walker in Britain // Brit. Fern. Gaz. 1964. Vol. 9. P. 137–140.

Widén C.J. Kemotaxonomiska undersökningar av floroglucinolderivaten i Dryopteris assimilis S. Walker och D. dilatata (Hoffm.) A. Gray i Finland. (Summary: Chemotaxonomic investigations of the phloroglucinol derivatives in Dryopteris assimilis S. Walker and D. dilatata (Hoffm.) A. Gray in Finland.) // Farm. Notisblad. 1967. Vol. 76. P. 185–216.

Williams J.G.K. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers // Nu-cleic Acids Res. 1990. Vol. 18, № 22. P. 6531–6535.

Yeh F.C. et al. POPGENE, the Microsoft Windows-based user-friendly software for population genetic analysis of co-dominant and dominant markers and quantitative traits. Canada: Dept. Renewable Resources, University of Alberta, Edmonton, 1999. 238 p.