Peculiarities of diesel fuel degradation by strain Rhodococcus sp. NDT23 under high salinity conditions

Main Article Content

Alexey A. Nazarov
Anna A. Pyankova
Ekaterina S. Korsakova

Abstract

Degradation of diesel fuel by the halotolerant strain Rhodococcus sp. NDT23 under increased salinity conditions was studied. The strain NDT23 was isolated from diesel-contaminated soil sample which collected at a distance of 3 m from the salt dump of the plant of PJSC Uralkali (Solikamsk, Perm region, Russia). On the basis of 16S rRNA gene analysis it was shown that the strain NDT23 is phylogenetically close to Rhodococcus fascians DSM 20669T and Rhodococcus cercidiphylli YIM 65003T (100% similarity). The presence of alkane-1-monooxygenase (alkB) gene in the strain NDT23 was found to have the highest similarity (99.10-100%) with alkB genes of Rhodococcus strains isolated from soil and plant tissues. The ability of the strain NDT23 to degrade diesel fuel (DF) in the medium without salt and at concentrations up to 100 g/L NaCl was detected. A positive effect of NaCl at a concentration of 50 g/L on the degradation of DT by the studied strain was revealed. Moreover, the presence of NaCl in the medium improved the biodegradation of long-chain hydrocarbons (C14-C20) by the strain NDT23 to a greater extent than short-chain hydrocarbons (C9-C13). It is shown that such an increase in the degradation activity of the strain NDT23 is due to an increase in the hydrophobicity of their cell walls in the presence of NaCl in the medium.

Article Details

How to Cite
Nazarov А. В., Pyankova А. А. ., & Korsakova Е. С. . (2023). Peculiarities of diesel fuel degradation by strain Rhodococcus sp. NDT23 under high salinity conditions. Bulletin of Perm University. Biology, (3), 242–249. https://doi.org/10.17072/1994-9952-2023-3-242-249
Section
Микробиология
Author Biographies

Alexey A. Nazarov, Institute of Ecology and Genetics of Microorganisms, Perm, Russia

Candidate of biological sciences, associate professor, senior researcher

Anna A. Pyankova, Institute of Ecology and Genetics of Microorganisms, Perm, Russia

Junior researcher

Ekaterina S. Korsakova, Institute of Ecology and Genetics of Microorganisms, Perm, Russia

Candidate of biological sciences, researcher

References

Методы общей бактериологии: пер. с англ. / под ред. Ф. Герхардта с соавт. М.: Мир, 1983. Т. 1–3.

Нетрусов А.И. Практикум по микробиологии. М.: Академия, 2005. 608 с.

Рубцова Е.В., Куюкина М.С., Ившина И.Б. Влияние условий культивирования на адгезивную ак-тивность родококков к н-гексадекану // Прикладная биохимия и микробиология. 2012. Т. 48, № 5. С. 501‒509.

Abatenh E. et al. Application of microorganisms in bioremediation-review // J. Env. Microbiol. 2017. Vol. 1(1). P. 2–9.

Abed R.M.M., Al-Kharusi S., Al-Hinai M. Effect of biostimulation, temperature and salinity on respiration activities and bacterial community composition in an oil polluted desert soil // Int. Biodeter. Biodegr. 2015. Vol. 98. P. 43–52.

Bredholt H. et al. Hydrophobicity development, alkane oxidation, and crude-oil emulsification in a Rho-dococcus species // Can. J. Microbiol. 2002. Vol. 48(2). P. 295–304.

Brzeszcz J., Kaszycki P. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an un-dervalued strategy for metabolic diversity and flexibility // Biodegrad. 2018. Vol. 29(4). P. 359–407.

Cao Y. et al. Microbial eco-physiological strategies for salinity-mediated crude oil biodegradation // Sci. Total. Environ. 2020. Vol. 727. P. 1–7.

de Carvalho C.C.C.R. Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions // Res. Microbiol. 2012. Vol. 163. P. 125–136.

de Carvalho C.C.C.R. et al. Adaptation of Rhodococcus erythropolis cells to high concentrations of tol-uene // Appl. Microbiol. Biotechnol. 2007. Vol. 76. P. 1423–1430.

Edbeib M.F., Wahab R.A., Huyop F. Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments // World J. Microbiol. Biotechnol. 2016. Vol. 32(8). P. 1–23.

Gharibzahedi S.M.T., Razavi S.H., Mousavi M. Potential applications and emerging trends of species of the genus Dietzia: a review // Ann. Microbiol. 2014. Vol. 64. P. 421–429.

Hart D.J., Vreeland R.H. Changes in the hydrophobic-hydrophilic cell surface character of Halomonas elongata in response to NaCl // J. Bacteriol. 1988. Vol. 170. P. 132–135.

Hvidsten I. et al. Fatty acids in bacterium Dietzia sp: grown on simple and complex hydrocarbons de-termined as FAME by GC-MS // Chem. Phys. Lipids. 2015. Vol. 190. P. 15–26.

Khalid F.E. et al. Bioremediation of diesel contaminated marine water by bacteria: a review and biblio-metric analysis // J. Mar. Sci. Eng. 2021. Vol. 9(2). P. 1–19.

Longang A., Buck C., Kirkwood K.M. Halotolerance and effect of salt on hydrophobicity in hydrocar-bon-degrading bacteria // Environ. Technol. 2016. Vol. 37(9). P. 1133–1140.

Maneerat S., Dikit P. Characterization of cell-associated bioemulsifier from Myroides sp. SM1, a marine bacterium // Songklanakarin J. Sci. Technol. 2007. Vol. 29(3). P. 769–779.

Rosenberg M. Bacterial adherence to hydrocarbons: a useful technique for studying cell surface hydro-phobicity // FEMS Microbiol. Lett. 1984. Vol. 22. P. 289–295.

Smits T.H.M. et al. Molecular screening for alkane hydroxylase genes in gram-negative and gram-positive strains // Environmental Microbiology. 1999. Vol. 1(4). P. 307–317.

Tarfeen N. et al. Microbial remediation: a promising tool for reclamation of contaminated sites with spe-cial emphasis on heavy metal and pesticide pollution: a review // Proces. 2022. Vol. 10. P. 1–27.

Xu X. et al. Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis // Front. Microbiol. 2018. Vol. 9. P. 1–11.

Zahir H. et al. Effect of salinity on the adhesive power actinomycetes in soil // J. Mater. Environ Sci. 2016. Vol. 7(9). P. 3327–3333.