The cold-shock gene’s protein complex of different serogroups of Vibrio cholerae

Main Article Content

Sergey O. Vodopyanov
Artem A. Gerasimenko
Alexey S. Vodopyanov
Алевтина Михайловна Горох
Ruslan V. Pisanov
Vladimir D. Kruglikov

Abstract

553 whole genome sequences of Vibrio cholerae strains O1, O139 and nonO1/nonO139 serogroups were studied for the presence of cold-shock genes cspA, cspV and csh1. The cspA and cspV genes were present in almost all strains. The csh1 gene was present in 99/449 strains of the serogroup O1 and in 21/86 cultures of nonO1/nonO139 taken in the study. The absence of the csh1 gene was revealed in strains of the O139 serogroup and strains of the O1 serogroup with ctxAB and tcpA genes. The study of the nucleotide composition identified 13 different variants of the csh1 gene which cause structural differences in the cold-shock protein Csh1. The two main types of Csh1 protein were represented by the reference type (68 genomes) and the major type (35 genomes), 11 minor variants included single genomes. According to the NCBI database, mainly representatives of minor types of Csh1 protein circulate abroad. The reference type Csh1 was mainly detected in O1 serogroup strains, while 10 strains with the reference type Csh1 protein were identified before 2000, then in 2001-2022 their number reached 55 strains. It is assumed that the new cold shock gene csh1 gives vibrions a selective advantage by ensuring survival at low temperatures in reservoirs.

Article Details

How to Cite
Vodopyanov С. О. ., Gerasimenko А. А. ., Vodopyanov А. С. ., Горох, А. М. ., Pisanov Р. В. ., & Kruglikov В. Д. . (2023). The cold-shock gene’s protein complex of different serogroups of Vibrio cholerae. Bulletin of Perm University. Biology, (2), 166–171. https://doi.org/10.17072/1994-9952-2023-2-166-171
Section
Микробиология
Author Biographies

Sergey O. Vodopyanov , Rostov-on-Don Antiplague Research Institute, Rostov-on-Don, Russia

Doctor of medical sciences, chief researcher of the department of microbiology of cholera and other acute intestinal infections

Artem A. Gerasimenko, Rostov-on-Don Antiplague Research Institute, Rostov-on-Don, Russia

Junior researcher of the laboratory of molecular biology, natural focal and zoonotic infections

Alexey S. Vodopyanov, Rostov-on-Don Antiplague Research Institute, Rostov-on-Don, Russia

Candidate of medical sciences, leading researcher of the laboratory of molecular biology, natural focal and zoonotic infections

Алевтина Михайловна Горох, Rostov-on-Don Antiplague Research Institute, Rostov-on-Don, Russia

Junior researcher of the department of microbiology of cholera and other acute intestinal infections

Ruslan V. Pisanov, Rostov-on-Don Antiplague Research Institute, Rostov-on-Don, Russia

Candidate of biological sciences, leading researcher of the laboratory of molecular biology, natural focal and zoonotic infections; head of the laboratory

Vladimir D. Kruglikov, Rostov-on-Don Antiplague Research Institute, Rostov-on-Don, Russia

Doctor of medical sciences, chief researcher of the department of microbiology of cholera and other acute intestinal infections

References

Бородина О.В. и др. Изучение встречаемости гена холодового шока csh1 у штаммов Vibrio cholerae, циркулирующих на территории Российской Федерации // Бактериология. 2021. Т. 6, № 3. С. 22–23.

Герасименко А.А., Водопьянов А.С., Писанов Р.В. Типирование штаммов SARS-COV-2 с помощью новой компьютерной программы «CovAnalyzer» // Российская наука в современном мире: сб. статей XXXVII междунар. науч.-практ. конф. М., 2021. С. 19–22.

Заднова С.П. и др. Сравнительная устойчивость типичных и генетически измененных штаммов Vibrio cholerae биовара El Tor к действию неблагоприятных факторов внешней среды // Журнал микробиологии, эпидемиологии и иммунобиологии. 2014. № 2. С. 11–17.

Монахова Е.В., Архангельская И.В. Холерные вибрионы неО1/неО139 серогрупп в этиологии острых кишечных инфекций: современная ситуация в России и в мире // Проблемы особо опасных инфекций. 2016. № 2. С. 14–23.

Москвитина Э.А. и др. Холера в начале XXI века. Прогноз на глобальном уровне // Проблемы особо опасных инфекций. 2012. № 1. С. 11–16.

Носков А.К. и др. Результаты мониторинга холеры на административных территориях России в период с 2013 по 2019 год // Журнал микробиологии, эпидемиологии и иммунобиологии. 2021. № 2. С. 163–175.

Титова С.В. и др. Анализ динамики выделения и биологических свойств штаммов V. cholerae О1 El Tor, изолированных из водных объектов на территории Ростовской области в 2003–2014 гг. // Здоровье населения и среда обитания. 2015. № 2. С. 39–41.

Bankevich A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing // Journal of computational biology. 2012. Vol. 19, № 5. P. 455–477.

Barria C., Malecki M., Arraiano C.M. Bacterial adaptation to cold // Microbiology. 2013. Vol. 159, № Pt_12. P. 2437–2443.

Cardoza E., Singh H.C Group-Mediated Antibiotic Stress Mimics the Cold Shock Response // Current Microbiology. 2021. Vol. 78, № 9. P. 3372–3380.

Carroll J.W. et al. Response and tolerance of toxigenic Vibrio cholerae O1 to cold temperatures // Antonie Van Leeuwenhoek. 2001. Vol. 79, № 3. P. 377–384.

Datta P.P., Bhadra R.K. Cold shock response and major cold shock proteins of Vibrio cholerae // Applied and Environmental Microbiology. 2003. Vol. 69, № 11. P. 6361–6369.

Didelot X., Parkhill J. A scalable analytical approach from bacterial genomes to epidemiology // Philo-sophical Transactions of the Royal Society B. 2022. Vol. 377, № 1861. P. 20210246.