Study and comparative evaluation of the toxicity of molybdenum (VI) oxide nanoparticles at a single oral exposure

Main Article Content

Nina V. Zaitseva
Marina A. Zemlyanova
Mark S. Stepankov
Anna M. Ignatova
Anastasiya A. Dovbysh
Anna V. Nedoshytova
Marina V. Volkova

Abstract

The toxic effect of nanoparticles of molybdenum (VI) oxide (MoO3 NPs) after a single oral intake was studied. We administered the test substance as an aqueous suspension at a dose of 2000 mg/kg body weight. Organs were taken from surviving animals 14 days after exposure to study the bioaccumulation of MoO3 NPs and pathomorphological changes caused by the action of this nanomaterial. On the second day after exposure, the death of 50% of the group exposed to NPs was recorded. It has been established that MoO3 NPs accumulate in the heart, lungs, liver, kidneys and brain in concentrations 15.59-221.86 times higher than the control values. In the liver of exposed rats revealed by histological methods the development of hepatitis and microvesicular steatosis; in the lungs – acute bronchitis, vasculitis; in the brain – subarachnoid hemorrhage. MoO3 NPs have a more apparent ability to bioaccumulate and produce toxic effects in comparison with their microdispersed analogue under single oral introductions into the body.

Article Details

How to Cite
Zaitseva Н. В. ., Zemlyanova М. А. ., Stepankov М. С., Ignatova А. М., Dovbysh А. А., Nedoshytova А. В., & Volkova М. В. (2022). Study and comparative evaluation of the toxicity of molybdenum (VI) oxide nanoparticles at a single oral exposure. Bulletin of Perm University. Biology, (3), 241–249. https://doi.org/10.17072/1994-9952-2022-3-241-249
Section
Ecology
Author Biographies

Nina V. Zaitseva, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russia

Doctor of medicine, academician of RAS, Scientific Director

Marina A. Zemlyanova, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russia

Doctor of medicine, head of Department of Biochemical and Cytogenetic Diagnostics, professor of Department of Microbiology and Immunology of PSU, professor of Department of Environmental Secure of PNRPU

Mark S. Stepankov, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russia

Junior researcher of Department of Biochemical and Cytogenetic Diagnostics

Anna M. Ignatova, Institute of Continuous Media Mechanics, Perm, Russia

Doctor of technical science, researcher of laboratory of physical foundations of strength

Anastasiya A. Dovbysh , Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russia

Toxicologist of Department of Biochemical and Cytogenetic Diagnostics;

Anna V. Nedoshytova, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russia

Researcher of Department of Analytical Chemistry Analysis

Marina V. Volkova, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russia

Researcher of Department of Analytical Chemistry Analysis

References

Бандман А.Л. и др. Вредные химические вещества. Неорганические соединения V-VIII групп: спра-вочное издание. Л.: Химия, 1989. C. 313–323.

Малова И.Ю. Общее учение о дистрофиях (методическое пособие). Майкоп, 2014. 108 с.

Паренаго О.П. и др. Наночастицы сульфидов молибдена – новый класс добавок к углеводородным смазочным материалам // Доклады Академии Наук. 2002. Т. 383, № 1. С. 84–86.

Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for Molybdenum. At-lanta, GA: U.S. Department of Health and Human Services, Public Health Service, 2020. 246 p.

Assadi F. et al. Effect of molybdenum trioxide nanoparticles (MoO3 NPs) on thyroid hormones in female rats // Journal of Human Environment and Health Promotion. 2016. Vol. 1, № 4. P. 189–195.

Borodianskiy K., Zinigrad M. Nanomaterials applications in modern metallurgical processes // Diffusion Foundations. 2016. Vol. 9. P. 30–41.

Božinović K. et al. In-vitro toxicity of molybdenum trioxide nanoparticles on human keratinocytes // Tox-icology. 2020. Vol. 444. P. 1–11.

Bundshuh M. et al. Nanoparticles in the environment: where do we come from, where do we go to? // En-vironmental Science Europe. 2018. Vol. 30, № 1. P. 1–17.

Dror I., Yaron B., Berkowitz B. Abiotic soil changes induced by engineered nanomaterials: A critical re-view // Journal of Contaminant Hydrology. 2015. Vol. 181. P. 3–16.

Fazelipour S. et al. Effect of molybdenum trioxide nanoparticles on histological changes of uterus and biochemical parameters of blood serum in rat // Comparative Clinical Pathology. 2020. Vol. 29. P. 991–999.

Fu L. et al. Applications of graphene and Its derivatives in the upstream oil and gas industry: a systemat-ic review // Nanomaterials (Basel). 2020. Vol. 10, № 6. P. 1–31.

Fuller G., Manford M. Subarachnoid hemorrhage // Neurology (Third edition). Elsevier Inc, 2010. P. 72–73.

Hautekeete M.L., Degott C., Benhamou J.P. Microvesicular steatosis of the liver // Acta Clinica Belgica. 1990. Vol. 45, № 5. P. 311-326.

Hewitt R.E., Chappel H.F., Powell J.J. Small and dangerous? Potential toxicity mechanisms of common exposure particles and nanoparticles // Current Opinion in Toxicology. 2020. Vol. 19. P. 93–98.

Huang Y.-W., Cambre M., Lee H.-J. The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms // International Journal of Molecular Science. 2017. Vol. 18, № 12. P. 1–13.

Indrakumar J., Korrapati P.S. Steering efficacy of nano molybdenum towards cancer: mechanism of ac-tion // Biological Trace Element Research. 2020. Vol. 194, № 1. P. 121–134.

Kaptein F.H.J. et al. Pulmonary infarction in acute pulmonary embolism // Thrombosis Research. 2021. Vol. 202. P. 162–169.

Lee S.H. et al. Reversible lithium-ion insertion in molybdenum oxide nanoparticles // Advanced Materi-als. 2008. Vol. 20, № 19. P. 3627–3632.

Li Z.Z. et al. The lysosomal-mitochondrial axis in free fatty acid – induced hepatic lipotoxicity // Hepa-tology. 2008. Vol. 47, № 5. P. 1495–1503.

Ma H.L. et al. Rcie planting increases biological nitrogen fixation in acidic soil and the influence of light and food layer thickness // Journal of Soil Science and Plant Nutrition. 2021. Vol. 21. P. 341–348.

Messer R.L.W., Lucas L.C. Localization of metallic ions with gingival fibroblast subcellular fractions // Journal of Biomedical Materials Research. 2002. Vol. 59, № 3. P. 466–472.

Moussa M.G. et al. Molybdenum-induced effects on nitrogen uptake efficiency and recovery in wheat (Triticum aestivum L.) using 15N-labeled nitrogen with different N forms and rates // Journal of Plant Nutrition and Soil Science. 2021. Vol. 184. P. 613–621.

Neme K. et al. Application of nanotechnology in agriculture, postharvest loss reduction and food pro-cessing: food security implication and challenges // Heliyon. 2021. Vol. 7, № 12. P. 1–12.

Osman S.A. et al. The influence of MoO3-NPs on agro-morphological criteria, genomic stability of DNA, biochemical assay, and production of common dry bean (Phaseolus vulgaris L.) // Plant Physiology and Bio-chemistry. 2020. Vol. 151. P. 77–87.

Peña-Bahamonde J. et al. Oxidation state of Mo affects dissolution and visible-light photocatalytic ac-tivity of MoO3 nanostructures // Journal of Catalysis. 2020. Vol. 381. P. 508–519.

Piracha S. et al. Nanoparticle: role in chemical industries, potential sources and chemical catalysis appli-cations // Scholar International Journal of Chemistry and Material Science. 2021. Vol. 4, № 4. P. 40–45.

Salata O.V. Applications of nanoparticles in biology and medicine // Journal of Nanobiotechnology. 2004. Vol. 2, № 1. P. 1–6.

Shafiq M. et al. An overview of the applications of nanomaterials and nanodevices in the food industry // Foods. 2020. Vol. 9, № 2. P. 1–27.

Shafique M., Luo X. Nanotechnology in transportation vehicles: an overview of its applications, envi-ronmental, health and safety concerns // Materials (Basel). 2019. Vol. 12, № 15. P. 1–32.

Sirajuddin A. et al. Primary pulmonary lymphoid lesions: radiologic and pathologic findings // Radi-ographics. 2016. Vol. 36, № 1. P. 53–70.

Sizova E.A., Miroshnikov S.A., Kalashnikov V.V. Morphological and biochemical parameters in Wistar rats influenced by molybdenum and its oxide nanoparticles // Agricultural Biology. 2016. Vol. 6. P. 929–936.

Sobańska Z. et al. Biological effects of molybdenum compounds in nanosized forms under in vitro and in vivo conditions // International Journal of Occupational Medicine and Environmental Health. 2020. Vol. 33, № 1. P. 1–19.

Sonwani S. et al. Inhalation exposure to atmospheric nanoparticles and Its associated impacts on hu-man health: a review // Front Sustain Cities. 2021. Vol. 3. P. 1–20.

Sukhanova A. et al. Dependence of nanoparticle toxicity on their physical and chemical properties // Nanoscale Research Letters. 2018. Vol. 13, № 44. P. 1–21.

Tran T.A. et al. Toxicity of nano molybdenum trioxide toward invasive breast cancer cells // ACS Ap-plied Materials & Interfaces. 2014. Vol. 6, № 4. P. 2980–2986.

Truong L. et al. Systematic determination of the relationship between nanoparticle core diameter and toxicity for a series of structurally analogous gold nanoparticles in zebrafish // Nanotoxicology. 2019. Vol. 13, № 7. P. 879–893.

Villa-Forte A. Overview of vasculitis // MSD Manual Professional Version. 2020. URL: https://www.msdmanuals.com/professional/musculoskeletal-and-connective-tissue-disorders/vasculitis/overview-of-vasculitis (дата обращения: 08.09.2022)

Xie G. et al. The applications of ultra-thin nanofilm for aerospace advanced manufacturing technology // Nanomaterials (Basel). 2021. Vol. 11, № 12. P. 1–9.

Zhang C.-Y. et al. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeu-tic targets // World Journal of Gastroenterology. 2016. Vol. 22, № 48. P. 10512–10522.

Zhang H. et al. Nanoscale molybdenum oxide improves plant growth and increases nitrate utilisation in rice (Oryza sativa L.) // Food and Energy Security. 2022. Vol. 11, № 2. 14 p.