Studying effects of lecithin and glucose on the growth properties of Streptococcus pneumoniae strains

Main Article Content

Nikita G. Sidorov
Alexander V. Poddubikov

Abstract

The article presents the results of evaluating the effect of the addition of glucose and lecithin to the culture medium (Brain Heart Infusion Broth) on the rate and accumulation of biomass of various Streptococcus pneumoniae strains: No. 3405, serotype 4 (K-4);  No.16082, serotype 14 (K-14); No. 3391, unstable in capsule formation (R-form). There was an increase in the biomass accumulation of strain No. 3405 (K-4) by 10% in the variant with the addition of lecithin; an increase in biomass by 64% and an elongation of the stationary phase in strain No. 16082 (K-14) when grown with the addition of glucose. There was an increase in the biomass growth of strain No. 3391 (R-form) by 37.5% and an extended duration of the stationary phase occurred when grown with lecithin. Based on the results obtained, it can be noted that lecithin and glucose had different effects on the growth of the studied strains of pneumococcus. The obtained data showed that strain No. 16082 (K-14) was the most promising and technologically advanced. Strain No. 16082 (K-14) had a more stable growth during three passages and in all three cases was identified with a high score value (2>) by MALDI-TOF mass spectrometry, had a higher level of biomass accumulation, and possessed a denser sediment of biomass. The study resulted in the selection of strain, optimal composition of the growth medium and suitable cultivation conditions to obtain a higher yield of S. pneumoniae biomass.

Article Details

How to Cite
Sidorov Н. Г. ., & Poddubikov А. В. (2022). Studying effects of lecithin and glucose on the growth properties of Streptococcus pneumoniae strains. Bulletin of Perm University. Biology, (3), 235–240. https://doi.org/10.17072/1994-9952-2022-3-235-240.
Section
Микробиология
Author Biographies

Nikita G. Sidorov, Mechnikov Research Institute for Vaccines and Sera. Moscow, Russia

Post-graduate student of the laboratory of opportunistic pathogenic bacteria

Alexander V. Poddubikov, Mechnikov Research Institute for Vaccines and Sera. Moscow, Russia

Candidate of Medical Sciences, The Head of laboratory of opportunistic pathogenic bacteria

References

Кветная А.С., Железова Л.И. Стимулирующее влияние фосфотидилхолина (лецитина) на патогенные свойства пневмококка // Ученые записки Санкт-Петербургского государственного медицинского университета им. акад. И.П. Павлова. 2014. Т. 21, № 1. C. 48‒51. doi: 10.24884/1607-4181-2014-21-1-48-51.

Лабораторная диагностика внебольничной пневмонии пневмококковой этиологии: метод. рекомендации. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия че-ловека, 2017. 64 с.

Маянский Н.А. и др. Серотиповое разнообразие и резистентность пневмококков // Вестник Российской академии медицинских наук. 2014. Т. 69, № 7‒8. С. 38‒45. doi: 10.15690/vramn.v69i7-8.1108.

Микробиология: возбудители бактериальных воздушно-капельных инфекций / под общ. ред. Л.И. Кафарской. М.: Юрайт, 2020. 115 с.

Сидоров Н.Г., Поддубиков А.В. Видоспецифические антигены Streptococcus pneumoniae как перспектива создания диагностических средств // Инфекционные болезни. 2021. T. 19, № 4. С. 73‒78. doi: 10.20953/1729-9225-2021-4-73-78.

Agnew H.N. et al. Streptococcus pneumoniae strains isolated from a single pediatric patient display dis-tinct phenotypes // Frontiers in Cellular and Infection Microbiology. 2022. Vol. 12. Article 866259. doi: 10.3389/fcimb.2022.866259.

Bärland N. et al. Mechanistic basis of choline import involved in teichoic acids and lipopolysaccharide modification // Science Advances. 2022. Vol. 8(9). Article eabm1122. doi:10.1126/sciadv.abm1122.

Brooks L.R.K., Mias G.I. Streptococcus pneumoniae's virulence and host immunity: Aging, diagnostics, and prevention // Frontiers in Immunology. 2018. Vol. 9. Article 1366. doi:10.3389/fimmu.2018.01366.

Chen H.H. et al. Non-typeable Streptococcus pneumoniae infection in a medical center in Taiwan after wide use of pneumococcal conjugate vaccine // Journal of Microbiology, Immunology and Infection. 2020. Vol. 53(1). P. 94‒98. doi:10.1016/j.jmii.2018.04.001.

Denapaite D. et al. Biosynthesis of teichoic acids in Streptococcus pneumoniae and closely related spe-cies: lessons from genomes // Microbial Drug Resistance. 2012. Vol. 18(3). P. 344‒358. doi: 10.1089/mdr.2012.0026.

Ing J. et al. Characterization of nontypeable and atypical Streptococcus pneumoniae pediatric isolates from 1994 to 2010 // Journal of Clinical Microbiology. 2012. Vol. 50(4). P. 1326‒1330. doi:10.15690/10.1128/jcm.05182-11.

Jacques N.A. et al. Effect of carbohydrate source and growth conditions on the production of lipo-teichoic acid by Streptococcus mutans Ingbritt // Infection and Immunity. 1979. Vol. 26(3). P. 1079‒1087. doi:10.1128/iai.26.3.1079-1087.1979.

Jia J. et al. Identification and molecular epidemiology of routinely determined Streptococcus pneumoni-ae with negative Quellung reaction results // Journal of Clinical Laboratory Analysis. 2022. Vol. 36(4). Article 24293. doi: 10.1002/jcla.24293.

Keller L.E., Robinson D.A., McDaniel L.S. Nonencapsulated Streptococcus pneumoniae: Emergence and pathogenesis // mBio. 2016. Vol. 7(2). Article e01792. doi:10.1128/mBio.01792-15.

Luck J.N., Tettelin H., Orihuela C.J. Sugar-Coated Killer: Serotype 3 pneumococcal disease // Frontiers in Cellular and Infection Microbiology. 2020. Vol. 10. Article 613287. doi: fcimb.2020.613287.

Maestro B., Sanz J.M. Choline binding proteins from Streptococcus pneumoniae: A dual role as enzybi-otics and targets for the design of new antimicrobials // Antibiotics (Basel). 2016. Vol. 5(2). Article 21. doi:10.3390/antibiotics5020021.

Magomani V. et al. Challenges of using molecular serotyping for surveillance of pneumococcal disease // Journal of Clinical Microbiology. 2014. Vol. 52(9). Article 3271-6. doi: 10.1128/JCM.01061-14.

Masomian M. et al. Development of Next Generation Streptococcus pneumoniae Vaccines Conferring Broad Protection // Vaccines (Basel). 2020. Vol. 8(1). Article 132. doi: 10.3390/vaccines8010132.

Oktari A. et al. The optimization of Human Blood Agar (HBA) for Streptococcus pneumonia growth // Journal of Physics Conference Series. 2019. Vol. 1280(2). Article 02200. doi: 10.1088/1742-6596/1280/2/022002.

Varghese R., Jayaraman R., Veeraraghavan B. Current challenges in the accurate identification of Strep-tococcus pneumoniae and its serogroups/serotypes in the vaccine era // Journal of Microbiological Methods. 2017. Vol. 141. P. 48‒54. doi: 10.1016/j.mimet.2017.07.015.