Influence of temperature stress on the spectrum of fatty acids of Vibrio cholerae strains

Main Article Content

Elena S. Shipko
Olga V. Duvanova

Abstract

Under conditions of simulated temperature stress gas chromatography combined with mass spectrometry was used to study the spectrum of fatty acids of strains of Vibrio cholerae O1, O139, non O1/non O139 serogroups with a different set of pathogenicity determinants isolated from patients and from water samples of surface water bodies. Significant differences in the composition of fatty acids under cold and heat stress in the cells of the causative agent of cholera relative to control samples were revealed. The strains isolated from the water of surface reservoirs differed in the spectrum of fatty acids under cold stress from the strains isolated from patients. In strains isolated from water, a decrease in cultivation temperature to 23 °C was accompanied by the synthesis of docosanoic, tetracosanoic and hexacosanoic acids and to 4 °C - an increase in the amount of tetradecanoic and hexadecanoic acids. While in strains isolated from patients, a decrease in cultivation temperature caused a regular increase in hexadecenoic acids. and octadecenoic acids. The reaction to heat stress in most of the studied strains regardless of the set of pathogenicity determinants and the source of isolation had a general trend: an increase in the total amount of saturated fatty acids, the synthesis of trans-isomers of unsaturated fatty acids and the appearance of ω-alicyclic and iso-branched fatty acids. In addition to the remodeling of the fatty acid composition of the membrane under the influence of temperature stress, the synthesis of oxylipins, phenylpropanoids and terpenoids, possibly playing the role of adaptogens, was noted.

Article Details

How to Cite
Shipko Е. С. ., & Duvanova О. В. . (2022). Influence of temperature stress on the spectrum of fatty acids of Vibrio cholerae strains. Bulletin of Perm University. Biology, (2), 143–154. https://doi.org/10.17072/1994-9952-2022-2-143-154
Section
Микробиология
Author Biographies

Elena S. Shipko, Rostov-on-Don Antiplague Research Institute

Junior researcher at the Department of microbiology of cholera and other acute intestinal infections

Olga V. Duvanova, Rostov-on-Don Antiplague Research Institute

Candidate of biology, senior researcher at the Department of microbiology of cholera and other acute intestinal infections

References

Бахолдина С.И., Соловьева Т.Ф. Экологические аспекты вирулентности бактерий псевдотуберкулеза // Вестник ДВО РАН. 2009. № 3. С. 85–89. URL: https: //cyberleninka.ru/article/n/ecologicheskie-aspekty-virulentnosti-bacteriy-pseudotuberculeza (дата обращения: 11.09.2020).

Васюкова Н.И., Озерецковская О.Л. Индуцированная устойчивость растений и салициловая кислота (обзор) // Прикладная биохимия и микробиология. 2007. Т. 43, № 4. С. 405–411. URL: https://elibrary.ru/download/elibrary_9534588_50848214.pdf.

Васюкова Н.И., Озерецковская О.Л. Жасмонат-зависимая защитная сигнализация в тканях растений. // Физиология растений. 2009. Т. 56, № 5. С. 643–653. URL: http://elibrary.ru /item.asp?id =12900977.

Колупаев Ю.Е., Ястреб Т.О. Стресс-протекторные эффекты салициловой кислоты и ее структурных аналогов // Физиология и биохимия культ. растений. 2013. Т. 45, № 2. С. 113–126. URL: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/66470/ 03Kolupaev.pdf?sequence=1.

Кузьменко Т.Е., Головня Р.В., Вронова Е.А. Исследование состава высших жирных кислот свободных липидов V. cholerae // Биоорганическая химия. 1980. Т. 1, № 6. С. 90–98.

Осипов Г.А. Хромато–масс–спектрометрический анализ микроорганизмов и их сообществ, в клинических пробах при инфекциях и дисбиозах // Химический анализ в медицинской диагностике. М.: Наука, 2010. С. 293–368.

Сачивкина Н.П., Подопригора И.В., Марахова А.И. Фарнезол: свойства, роль и перспективы использования при регулировании пленкообразования у грибов рода Candida // Фармация. 2020. Т. 69, № 6. С. 8–12. https://doi.org/10.29296/25419218-2020-06-02.

Day A.P., Oliver J.D. Changes in membrane fatty acid composition during entry of Vibrio vulnificus into the viable but nonculturable state // J. Microbiol. 2004. Vol. 42, № 2. P. 69–73. PMID: 15357297.

Díaz-Quiroz D.C. et al. Current perspectives on applications of shikimic and aminoshikimic acids in pharmaceutical chemistry // Research and Reports in Medicinal Chemistry. 2014. № 4. Р. 35–46. DOI: http://doi.org /10.2147/RRMC.S46560

Eberlein C. et al. Immediate response mechanisms of gram-negative solvent-tolerant bacteria to cope with environmental stress: cis-trans isomerization of unsaturated fatty acids and outer membrane vesicle secre-tion // Appl. Microbiol. Biotechnol. 2018. Vol. 102. P. 2583–2593. DOI: http: //doi.org/10.1007/ s00253-018-8832-9.

Heipieper H.J., Hachicho N. Bacterial solvent responses and tolerance: сis-trans isomerization // Hydrocarbon and lipid. Microbiology Protocols. / eds McGenity T., Timmis K., Nogales B. Berlin; Heidelberg: Springer, 2014. DOI: http://doi.org/10.1007/8623_2014_16.

Heipeiper H.J., Meinhard F., Segura A. The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism // Fems Microbiol. Let. 2003. Vol. 229, № 1. P. 1–7. DOI: http://doi.org /10.1016 /S0378-1097(03) 00792-4.

Janse J.D. Fatty acid analysis in the identification, taxonomy and ecology of (plant pathogenic) Bacteria // Diagnosis and Identification of Plant Pathogens. Developments in Plant Pathology / eds Dehne H.W., Adam G., Diekmann M., Frahm J., Mauler-Machnik A., van Halteren P. Dordrecht: Springer, 1997. № 11. DOI: https://doi.org/10.1007/978-94-009-0043-1_13.

Javvadi S.G. et al. The spent culture supernatant of Pseudomonas syringae contains azelaic acid // BMC Microbiol. 2018. Vol. 18. P. 1–11. DOI: http://doi.org/10.1186/s12866-018-1352-z.

Lambert M.A. et al. Differentiation of Vibrionaceae species by their cellular fatty acid composition // Int. J. Syst. Bacteriol. 1983. Vol. 33, № 4. P. 777–792. DOI: http://doi.org/10.1099/00207713-33-4-777.

Lee D.et al. Piperonylic acid stimulates keratinocyte growth and survival by activating epidermal growth factor receptor (EGFR) // Sci. Rep. 2018. Vol. 9. P. 8. DOI: http://doi.org /10.1038/s41598-017-18361-3.

Li J. et al. Temperature- and surfactant-induced membrane modifica tions that alter Listeria monocyto-genes nisin sensitivity by different mechanisms // Appl. Environ. Microbiol. 2002. Vol. 68, № 12. P. 5904–5910. DOI: http://doi.org/10.1128/ aem.68.12 5904 -5910. 2002.

Moldoveanu S.B., David V. Derivatization Methods in GC and GC/MS // Gas Chromatography / ed. Peter Kusch. 2019. 142 p. DOI: 10.5772/intechopen.81954.

Moravec A.N. et al. Exogenous polyunsaturated fatty acids impact membrane remodeling and affect virulence phenotypes among pathogenic Vibrio species // Appl. Environ. Microbiol. 2017. Vol. 83, № 22. P. 1–16. doi: 10.1128/AEM.01415-17.

Palmieri F. et al. Chapter two-oxalic acid, a molecule at the crossroads of bacterial-fungal interactions // Advan. Appl. Microbiol. 2019. Vol. 106. P. 49–77. DOI: http://doi.org/10.1016 /bs.aambs.2018.10.001.

Poger D., Caron B., Mark A.E. Effect of methyl-branched fatty acids on the structure of lipid bilayers // J. Physical. Chem. 2014. Vol. 118, № 48. P. 13838–13848. DOI: http: //doi.org/10.1021 /jp503910r.

Poger D., Caron B., Mark A.E. Ring to rule them all: the effect of cyclopropane fatty acids on the fluidity of lipid bilayers // J. Physical. Chem. B. 2015. Vol. 119, № 17. P. 5487–5495. DOI: http: //doi.org /10.1021/acs.jpcb.5в00958.

Poger D., Mark A.E. Effect of ring size in ω-alicyclic fatty acids on the structural and dynamical proper-ties associated with fluidity in lipid bilayers // Langmuir. 2015. Vol. 31, № 42. P. 11574–11582. DOI: http://doi.org/10.1021/acs.langmuir.5b02635.

Rowe H.M., Hantley J.F. From the outside - in: The Francisella tularensis envelope and virulence // Front Cell Infect. Microbiol. 2015. № 5. P. 94. DOI: http://doi.org/10.3389/fcimb.2015.00094.

Seydlova G. et al. The extent of the temperature-induced membrane remodeling in two closely related Bordetella species reflects their adaptation to diverse environmental niches // J. Biol. Chem. 2017. Vol. 292, № 19. P. 8048–8058. DOI: http://doi.org /10.1074/jbc.M117.781559.

Shalk M. et al. Piperonylic acid, a selective, mechanism-based inactivator of the trans-cinnamate 4-hydroxylase: a new tool to control the flux of metabolites in the phenylpropanoid pathway // Plant Physiol. 1998. Vol. 118. P. 209–218. DOI: http://doi.org /10.1104/ pp.118.1.209.

Sherlock. Microbial Identification System. V 6.2. MIS Operating Manual. Newark: Sandy Dr, 2012.

Siliakus M.F., Oost J., Kengen S.W.M. Adaptations of archeal and bacterial membranes to variations in temperture, pH and pressure // Extremophiles. 2017. Vol. 21. P. 651–670. DOI: http://doi.org /10.1007/s00792-017-0939-x.

Smith D.S. et al. Polyunsaturated fatty acids cause physiological and behavioral changes in Vibrio alginolyticus and Vibrio fischeri // Microbiologyopen. 2021. Vol. 10, № 5. P. 1–16. doi: 10.1002/mbo3.1237.

Urdaci M.C., Marchand M., Grimont P.A. Characterization of 22 Vibrio species by gas chromatography analysis of their cellular fatty acids // Res. Microbiol. 1990. Vol. 141, № 4. P. 437–452. DOI: http://doi.org/10.1016/0923-2508(90)90070-7

Vigh L., Landry J., Nakamoto H. Membrane regulation of the stress response from prokaryotic models to mammalian cells // Ann. NY Acad. Sci. 2007. Vol. 1113, № 1. P. 40–51. DOI: http://doi.org /10.1196/annals.1391.027.

Wang L., Wu J. The essential role of jasmonic acid in plant herbivore interactions using the wild tobacco Nicotiana attenuate as a model // J. Gen. Genomics. 2013. Vol. 40. P. 597–606. DOI: http://doi.org /10.1016 /j.jgg.2013.10.001.

Watson Н. Biological membranes // Essays Biochem. 2015. Vol. 59. P. 43–69. DOI: http://doi.org/10.1042/bse0590043.

Yoon J-H, Lee S-Y. Characteristics of viable-but-nonculturable Vibrio parahaemolyticus induced by nu-trient-deficiency at cold temperature // Crit. Rev. Food Sci. Nutr. 2020. Vol. 60, № 8. P. 1302–1320. DOI: 10.1080/ 10408398.2019.1570076.