Influence of single-walled carbon nanotubes on the biofilm formation of actinobacteria of the Rhodococcus genus and proteobacteria of activated sludge

Main Article Content

Yulia G. Maksimova
Yana E. Bykova

Abstract

The effect of single-walled carbon nanotubes (SWCNTs) on the formation and eradication of biofilms of activated sludge proteobacteria and actinobacteria of the genus Rhodococcus was studied. It has been shown that SWCNTs do not inhibit the formation of biofilms of these bacteria and do not cause their destruction, while in the presence of SWCNTs, much more massive biofilms of Alcaligenes faecalis 2 and Acinetobacter guillouiae 11h are formed. It was shown that the level of dehydrogenase activity, estimated by the reduction of tetrazolium salt to formazan, in biofilm cells formed in the presence of SWCNTs, exceeded that of biofilms in the control.

Article Details

How to Cite
Maksimova Ю. Г. ., & Bykova Я. Е. . (2022). Influence of single-walled carbon nanotubes on the biofilm formation of actinobacteria of the Rhodococcus genus and proteobacteria of activated sludge. Bulletin of Perm University. Biology, (2), 131–136. https://doi.org/10.17072/1994-9952-2022-2-131-136
Section
Микробиология
Author Biographies

Yulia G. Maksimova, Institute of Ecology and Genetics of Microorganisms, Ural Branch RAS

Doctor of biology, docent, head of the laboratory

Yana E. Bykova, Institute of Ecology and Genetics of Microorganisms, Ural Branch RAS

Engineer, student

References

Демаков В.А. и др. Бактерии активного ила биологических очистных сооружений, трансформирующие цианопиридины и амиды пиридинкарбоновых кислот // Микробиология. 2015. Т. 84, № 3. С. 369–378.

Дерябин Д.Г. и др. Исследование взаимодействия углеродных наноматериалов с клетками Escherichia coli методом атомно-силовой микроскопии // Российские нанотехнологии. 2010. Т. 5, № 11–12. С. 103–108.

Зарубина А.П. и др. Биотестирование биологических эффектов одностенных углеродных нанотрубок с использованием тест-системы люминесцентных бактерий // Российские нанотехнологии. 2009. Т. 4, № 11–12. С. 152–155.

Максимова Ю.Г., Быкова Я.Е. Влияние многостенных углеродных нанотрубок на биопленкообразование Escherichia coli // Вестник Пермского университета. Сер. Биология. 2021. Вып. 2. С. 87–92.

Максимова Ю.Г. и др. Деградация пиридина суспензиями и биопленками штаммов Achromobacter pulmonis ПНОС и Burkholderia dolosa БОС, выделенных из активного ила очистных сооружений // Биотехнология. 2020. Т. 36, № 2. С. 86–98.

Boncel S. et al. Interactions of carbon nanotubes with aqueous/aquatic media containing organic/inorganic contaminants and selected organisms // Chemosphere. 2015. Vol. 136. P. 211–221.

Iijima S., Ichinashi T. Single-shell carbon nanotubes of 1-nm diameter // Nature. 1993. Vol. 363. P. 603–605.

Jin L. et al. High concentrations of single-walled carbon nanotubes lower soil enzyme activity and micro-bial biomass // Ecotoxicology and Environmental Safety. 2013. Vol. 88. P. 9–15.

Jin L. et al. Single-walled carbon nanotubes alter soil microbial community composition // Science of the Total Environment. 2014. Vol. 466–467. P. 533–538.

Kang S. et al. Single-walled carbon nanotubes exhibit strong antimicrobial activity // Langmuir. 2007. Vol. 23. P. 8670–8673.

Kang S. et al. Antibacterial effects of carbon nanotubes: size does matter! // Langmuir. 2008. Vol. 24, № 13. P. 6409–6413.

Liu S. et al. Sharper and faster “nano darts” kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube // ACS Nano. 2009. Vol. 3. P. 3891–3902.

Liu S. et al. Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Ba-cillus subtilis investigated by atomic force microscopy // Nanoscale. 2010. Vol. 2. P. 2744–2750.

Rodrigues D.F., Elimelech M. Toxic effects of single-walled carbon nanotubes in the development of E. coli biofilm // Environmental Science and Technology. 2010. Vol. 44. P. 4583–4589.

Vecitis C.D. et al. Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes // ACS Nano. 2010. Vol. 4, № 9. P. 5471–5479.