Влияние тяжелых металлов на штаммы рода Enterococcus The effect of heavy metals on strains of the genus Enterococcus
##plugins.themes.bootstrap3.article.main##
Аннотация
##plugins.themes.bootstrap3.article.details##
Лицензионный договор на право использования научного произведения в научных журналах, учредителем которых является Пермский государственный национальный исследовательский университет
Текст Договора размещен на сайте Пермского государственного национального исследовательского университета http://www.psu.ru/, а также его можно получить по электронной почте в «Отделе научных периодических и продолжающихся изданий ПГНИУ»: YakshnaN@psu.ru или в редакциях научных журналов ПГНИУ.
Библиографические ссылки
Бузолева Л.С. Микробиологическая оценка качества природных вод. Владивосток, 2011. 85 с.
Коршенко А.Н. Качество морских вод по гидрохимическим показателям. Ежегодник 2019. М.: Наука, 2020. 281 с.
Красная Ю.В., Нестеров А.С., Потатуркина-Нестерова Н.И. Значение бактерий рода Enterococcus в жизнедеятельности человека // Современные проблемы науки и образования. 2014. № 3. С. 1169–1178.
Прунтова О.В. Лабораторный практикум по общей микробиологии. М.: Владимир, 2005. 77 с.
Шулькин В.М., Богданова Н.Н., Киселев В.И. Металлы в речных водах Приморского края // Геохи-мия. 2007. Т. 1. С. 79–88.
Abou-Shanab R., Berkum V.P., Angle J. Heavy metal resistance and genotypic analysis of metal re-sistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizo-sphere of Alyssum murale // Chemosphere. 2007. Vol. 68. P. 360–367. DOI: 10.1016/j.chemosphere.2006.12.051.
Abrantes M.C., Kok J., Lopes M.de F.S. Enterococcus faecalis zinc-responsive proteins mediate bacterial defence against zinc overload, lysozyme and oxidative stress // Microbiology. 2014. Vol. 160. P. 2755–2762. DOI: 10.1099/mic.0.080341-0.
Arguello J.M., Raimunda D., Padilla-Benavides T. Mechanisms of copper homeostasis in bacteria // Fron-tiers in Cellular and Infection Microbiology. 2013. Vol. 3, № 73. P. 1–14. DOI: 10.3389/fcimb.2013.00073.
Ayangbenro A.S., Babalola O.O. A new strategy for heavy metal polluted environments: a review of mi-crobial biosorbents // Int. J. Environ. Res. Public. Health. 2017. Vol. 14, № 94. P. 1–16. DOI: 10.3390/ijerph14010094.
Barbosa J., Borges S., Teixeira P. Selection of potential probiotic Enterococcus faecium isolated from Portuguese fermented food // International Journal of Food Microbiology. 2014. Vol. 191. P. 144–148. DOI: 10.1016/j.ijfoodmicro.2014.09.009.
Burgmann H. et al. Water, and sanitation: an essential battlefront in the war on antimicrobial resistance // FEMS Microbiol. Ecol. 2018. Vol. 94. P. 1–14. DOI: 10.1093/femsec/fiy101.
Butaye P., Devriese L.A., Haesebrouck F. Differences in Antibiotic Resistance Patterns of Enterococcus faecalis and Enterococcus faecium Strains Isolated from Farm and Pet Animals // Antimicrobial Agents and Chemotherapy. 2001. Vol. 45, № 5. P. 1374–1378. DOI: 10.1128/AAC.45.5.1374-1378.2001.
Cesare Di A. et al. The marine environment as a reservoir of enterococci carrying resistance and virulence genes strongly associated with clinical strains // Environmental Microbiology Reports. 2014. Vol. 6, № 2. P. 184–190. DOI: 10.1111/1758-2229.12125.
Frei A. et al. Metals to combat antimicrobial resistance // Nature Reviews Chemistry. 2023. Vol. 7. P. 202–224. DOI: 10.1038/s41570-023-00463-4.
Fu F., Wang Q. Removal of heavy metal ions from wastewaters: a review // J. Environ. Manage. 2011. Vol. 92. P. 407–418. DOI: 10.1016/j.jenvman.2010.11.011.
Garrido A.M., Galvez A., Pulido R.P. Antimicrobial Resistance in Enterococci // J. Infect. Dis. Ther. 2014. Vol. 2, № 4. P. 1–7. DOI: 10.4172/2332-0877.1000150.
Gin K.Y.H., Goh S.G. Modeling the effect of light and salinity on viable but non-culturable (VBNC) En-terococcus // Water Research. 2013. Vol. 47, № 10. P. 3315–3328. DOI: 10.1016/j.watres.2013.03.021.
Gupta S. et al. Ahammad Heavy metal and antibiotic resistance in four Indian and UK rivers with differ-ent levels and types of water pollution // Science of The Total Environment. 2023. Vol. 857, № 1. Art. 159059. DOI: 10.1016/j.scitotenv.2022.159059.
Hasman H., Aarestrup F.M. tcrB, a gene conferring transferable copper resistance in Enterococcus faeci-um: occurrence, transferability, and linkage to macrolide and glycopeptide resistance // Antimicrob Agents Chemother. 2002. Vol. 46. P. 1410–1416. DOI: 10.1128/aac.46.5.1410-1416.2002l.
Jungmann J. et al. Resistance to cadmium mediated by ubiquitin-dependent proteolysis // Nature. 1993. Vol. 361. P. 369–371.
Li X., Krumholz L.R. Regulation of arsenate resistance in Desulfovibrio desulfuricans G20 by an arsRBCC operon and an arsC gene // J. Bacteriol. 2007. Vol. 189. P. 3705–3711. DOI: 10.1128/jb.01913-06.
Paplace J.M., Boutibonnes P., Auffray Y. Unusual resistance and acquired tolerance to cadmium chlo-ride in Enterococcus faecalis // J. Basic. Microbiol. 1996. Vol. 36. P. 311–317. DOI: 10.1002/jobm.3620360504.
Parsons C., Lee S., Kathariou S. Dissemination and conservation of cadmium and arsenic resistance de-terminants in Listeria and other Gram-positive bacteria // Molecular Microbiology. 2020. Vol. 113. P. 560–569. DOI: 10.1111/mmi.14470.
Sadowy E., Luczkiewicz A. Drug-resistant and hospital-associated Enterococcus faecium from wastewater, riverine estuary and anthropogenically impacted marine catchment basin // BMC Microbiology. 2014. Vol. 14, № 66. P. 1–15. DOI: 10.1186/1471-2180-14-66.
Schwartz G.G., Reis I.M. Is cadmium a cause of human pancreatic cancer // Cancer. Epidemiol. Bi-omark. Prev. 2000. Vol. 9. P. 139–145.
Shah S.B. Heavy Metals in the Marine Environment—An Overview // Heavy Metals in Scleractinian Corals / Springer Briefs in Earth Sciences. Springer, Cham. 2021. P. 1–26. DOI: 10.1007/978-3-030-73613-2_1.
Skowron K. et al. Prevalence and distribution of VRE (vancomycin resistant enterococci) and VSE (van-comycin susceptible enterococci) strains in the breeding environment // Annals of Agricultural and Environmen-tal Medicine. 2016. Vol. 23, № 2. P. 231–236. DOI: 10.5604/12321966.1203882.
Somerville G.A., Proctor R.A. At the crossroads of bacteria metabolism and virulence factor synthesis in Staphylococci // Microbiol. Mol. Biol. Rev. 2009. Vol. 73. P. 233–248. DOI: 10.1128/mmbr.00005-09.
Tsai K., Yoon K., Lynn A. ATP-dependent cadmium transport by the cadA cadmium resistance determi-nant in everted membrane vesicles of Bacillus subtilis // J. Bacteriol. 1992. Vol. 174. P. 116–121. DOI: 10.1128/jb.174.1.116-121.1992.
Wiebelhaus N. et al. Protein folding stability changes across the proteome reveal targets of Cu toxicity in E. coli // ACS Chem. Biol. 2021. Vol. 16. P. 214–224. DOI: 10.1021/acschembio.0c00900.
Wu G. et al. Enterococcus faecalis strain LZ-11 isolated from Lanzhou reach of the Yellow River is able to resist and absorb Cadmium // Journal of Applied Microbiology. 2014. Vol. 116. P. 1172–1180. DOI: 10.1111/jam.12460.
Zhang S. et al. Genome sequences of copper resistant and sensitive Enterococcus faecalis strains isolated from copper-fed pigs in Denmark // Standards in Genomic Sciences. 2015. Vol. 35. P. 1–10.
Zhao X. et al. Study on the influence of soil microbial community on the long-term heavy metal pollu-tion of different land use types and depth layers in mine // Ecotoxicol. Environ. Saf. 2019. Vol. 170. P. 218–226. DOI: 10.1016/j.ecoenv.2018.11.136.