ВЛИЯНИЕ ТЕХНОГЕННОГО ЗАСОЛЕНИЯ ПОЧВЫ НА БАКТЕРИАЛЬНЫЕ СООБЩЕСТВА РИЗОСФЕРЫ РАСТЕНИЙ МЯТЛИКА ЛУГОВОГО (POA PRATENSIS L.)

Авторы

  • Алексей/Aleksey Владимирович/Vladimirovich Назаров/Nazarov ФГБУН Институт экологии и генетики микроорганизмов УрО РАН; ФГБОУВО «Пермский государственный национальный исследовательский университет»
  • Екатерина/Ekaterina Сергеевна/Sergeyevna Корсакова/Korsakova ФГБУН Институт экологии и генетики микроорганизмов УрО РАН; ФГБОУВО «Пермский государственный национальный исследовательский университет»
  • Людмила/Lyudmila Николаевна/Nikolaevna Ананьина/Anan'ina ФГБУН Институт экологии и генетики микроорганизмов УрО РАН
  • Елена/Elena Генриховна/Genrikhovna Плотникова/Plotnikova ФГБУН Институт экологии и генетики микроорганизмов УрО РАН; ФГБОУВО «Пермский государственный национальный исследовательский университет»

Ключевые слова:

бактериальные сообщества, ризосфера, мятлик луговой, техногенное засоление

Аннотация

Приведены результаты исследований влияния техногенного засоления на бактериальные сообщества ризосферы растений мятлика лугового (Poa pratensis L.), произрастающих на территории района промышленных разработок Верхнекамского месторождения солей (г. Соликамск, Пермский край). Обнаружены изменения в ризосферных сообществах бактерий: снижение численности и увеличение таксономического разнообразия гетеротрофных бактерий; уменьшение доли бактерий - представителей класса Gammaproteobacteria; увеличение доли бактерий, принадлежащих к классам Actinobacteria (участки 2, 3), Alphaproteobacteria (участки 4, 5), Flavobacteria (участок 3), Bacilli (участки 4, 5); изменение таксономического состава бактериального сообщества. На участках с засоленной почвой в ризосфере доминировали умеренно-галофильные бактерии сем. Halomonadaceae (участки 2, 3 и 5) и галофильные бактерии рода Pseudomonas (участок 4), что указывает на возможное наличие симбиотических связей между данными бактериями и растениями в условиях засоления.

Биографии авторов

Алексей/Aleksey Владимирович/Vladimirovich Назаров/Nazarov, ФГБУН Институт экологии и генетики микроорганизмов УрО РАН; ФГБОУВО «Пермский государственный национальный исследовательский университет»

Кандидат биологических наук, старший научный сотрудник лаборатории молекулярной микробиологии и биотехнологии;Доцент кафедры ботаники и генетики растений

Екатерина/Ekaterina Сергеевна/Sergeyevna Корсакова/Korsakova, ФГБУН Институт экологии и генетики микроорганизмов УрО РАН; ФГБОУВО «Пермский государственный национальный исследовательский университет»

Кандидат биологических наук, младший научный сотрудник лаборатории молекулярной микробиологии и биотехнологии;Доцент кафедры ботаники и генетики растений

Людмила/Lyudmila Николаевна/Nikolaevna Ананьина/Anan'ina, ФГБУН Институт экологии и генетики микроорганизмов УрО РАН

Кандидат биологических наук, научный сотрудник лаборатории молекулярной микробиологии и биотехнологии

Елена/Elena Генриховна/Genrikhovna Плотникова/Plotnikova, ФГБУН Институт экологии и генетики микроорганизмов УрО РАН; ФГБОУВО «Пермский государственный национальный исследовательский университет»

Доктор биологических наук, ведущий научный сотрудник лаборатории молекулярной микробиологии и биотехнологии;Профессор кафедры ботаники и генетики растений

Библиографические ссылки

Лопатовская О.Г., Сугаченко А.А. Мелиорация почв. Засоленные почвы. Иркутск, 2010. 101 с.

Методы почвенной микробиологии и биохимии / под ред. Д.Г. Звягинцева. М.: Изд-во МГУ, 1991. 303 с.

Мэггеран Э. Экологическое разнообразие и его измерение. М.: Мир, 1992. 173 с.

Практикум по агрохимии / под ред. В.Г. Минеева. М.: Изд-во МГУ, 2001. 689 с.

Розанова Е.П., Назина Т.Н. Углеводородокисляю-щие бактерии и их активность в нефтяных пластах // Микробиология. 1982. Т. 51. С. 324-348.

Anansina L.N. et al. Naphthalene-degrading bacteria of the genus Rhodococcus from the Verkhne-kamsk salt mining region of Russia // Antonie van Leeuwenhoek. 2011. Vol. 100, Iss. 2. P. 309-316.

Bharathkumar S. et al. Characterization of the predominant bacterial population of different mangrove rhizosphere soils using 16S rRNA gene-based single-strand conformation polymorphism (SSCP) // World Journal of Microbiology and Biotechnology. 2008. Vol. 24. P. 387-394.

Borsodi A.K. et al. Diversity and ecological tolerance of bacteria isolated from the rhizosphere of halo-phyton plants living nearby Kiskunsag soda ponds, Hungary // Acta Microbiologica Et Immu-nologica Hungarica. 2015. Vol. 62. P. 183-197.

Castellanos T. et al. Search of environmental descriptors to explain the variability of the bacterial diversity from maize rhizospheres across a regional scale // European Journal of Soil Biology. 2009. Vol. 45. P. 383-393.

Dimkpa C., Weinand T., Asch F. Plant-rhizobacteria interactions alleviate abiotic stress conditions // Plant, Cell and Environment. 2009. Vol. 32. P. 1682-1694.

Ibekwe A.M. et al. Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH, and boron // Soil Biology and Biochemistry. 2010. Vol. 42. P. 567-575.

Mapelli F. et al. Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils // BioMed Research International. 2013. Vol. 2013. P. 1-13.

Oren A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity // Saline Systems. 2008. Vol. 4, Iss. 2. P. 1-13.

Romanenko L.A. et al. Pseudomonas xanthomarina sp. nov., a novel bacterium isolated from marine ascidian // The Journal of General and Applied Microbiology. 2005. Vol. 51, № 2. P. 65-71.

Wang H. et al. Diversity of rhizosphere bacteria associated with different soybean cultivars in two soil conditions // Soil Science and Plant Nutrition. 2014. Vol. 60. P. 630-639.

Yang H. et al. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke // Scientific Reports. 2016. V. 20687, № 6. P. 1-10.

References

Lopatovskaya O.G., Sugachenko A.A. Melioraciya pocv. Zasolennye pocvy [Land reclamation. Saline soils]. Irkutsk, 2010, 101 p. (In Russ.).

Zvyagintsev D.G., ed. Metody pocvennoj mikrobi-ologii i biochimii [Methods of soil microbiology and biochemistry]. Moscow, MSU Publ., 1991, 303 p. (In Russ.).

Maggeran E. Ekologiceskoe raznoobrazie i ego iz-merenie [Ecological diversity and its dimension]. Moscow, Mir Publ., 1992, 173 p. (In Russ.).

Mineev V.G., ed. Praktikum po agrochimii [Workshop on agrochemistry]. Moscow, MSU Publ., 2001, 689 p. (In Russ.).

Rozanova E.P., Nazina T.N. [Hydrocarbon-oxidizing bacteria and their activity in oil reservoirs]. Mik-robiologiya V. 51 (1982): pp. 324-348. (In Russ.).

Ananina L.N., Yastrebova O.V., Demakov V.A., Plotnikova E.G. Naphthalene-degrading bacteria of the genus Rhodococcus from the Verkhne-kamsk salt mining region of Russia. Antonie van Leeuwenhoek V. 100, Iss. 2 (2011): pp. 309-316.

Bharathkumar S., Kumar R., Paul D., Prabavathy V.R., Nair S. Characterization of the predominant bacterial population of different mangrove rhizosphere soils using 16S rRNA gene-based single-strand conformation polymorphism (SSCP). World Journal of Microbiology and Biotechnology V. 24 (2008): pp. 387-394.

Borsodi A.K., Bárány Á., Krett G., Márialigeti K., Szili-Kovács T. Diversity and ecological tolerance of bacteria isolated from the rhizosphere of halophyton plants living nearby Kiskunság soda ponds, Hungary. Acta Microbiologica Et Immunologica Hungarica V. 62 (2015): pp. 183-197.

Castellanos T., Dohrmann A.B., Imfeld G., Baumgarte S., Tebbe C.C. Search of environmental descriptors to explain the variability of the

bacterial diversity from maize rhizospheres across a regional scale. European Journal of Soil Biology V. 45 (2009): pp. 383-393.

Dimkpa C., Weinand T., Asch F. Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell and Environment V. 32 (2009): pp. 1682-1694.

Ibekwe A.M., Poss J.A., Grattan S.R., Grieve C.M., Suarez D. Bacterial diversity in cucumber (Cucu-mis sativus) rhizosphere in response to salinity, soil pH, and boron. Soil Biology and Biochemistry V. 42 (2010): pp. 567-575.

Mapelli F., Marasco R., Rolli E., Barbato M., Cherif H., Guesmi A., Ouzari I., Daffonchio D., Borin S. Potential for plant growth promotion of rhizobac-teria associated with Salicornia growing in Tunisian hypersaline soils. BioMed Research International V. 2013 (2013): pp. 1-13.

Oren A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems V. 4, Iss. 2 (2008): pp. 1-13.

Romanenko L.A., Uchino M., Falsen E., Lysenko A.M., Zhukova N.V., Mikhailov V.V. Pseudomonas xanthomarina sp. nov., a novel bacterium isolated from marine ascidian. The Journal of General and Applied Microbiology V. 51 N 2 (2005): pp. 65-71.

Wang H., Wang S.D., Jiang Y., Zhao S.J., Chen W.X. Diversity of rhizosphere bacteria associated with different soybean cultivars in two soil conditions. Soil Science and Plant Nutrition V. 60 (2014): pp. 630-639.

Yang H., Hu J., Long X., Liu Z., Rengel Z. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke. Scientific Reports V. 20687 N 6 (2016): pp. 1-10.

Загрузки

Опубликован

2018-11-03

Как цитировать

Назаров/Nazarov А. В., Корсакова/Korsakova Е. С., Ананьина/Anan’ina Л. Н., & Плотникова/Plotnikova Е. Г. (2018). ВЛИЯНИЕ ТЕХНОГЕННОГО ЗАСОЛЕНИЯ ПОЧВЫ НА БАКТЕРИАЛЬНЫЕ СООБЩЕСТВА РИЗОСФЕРЫ РАСТЕНИЙ МЯТЛИКА ЛУГОВОГО (POA PRATENSIS L.). Вестник Пермского университета. Серия «Биология»=Bulletin of Perm University. Biology, (4), 436–441. извлечено от http://press.psu.ru/index.php/bio/article/view/1890

Наиболее читаемые статьи этого автора (авторов)