Study of Stretched Polyurethanes Microstructure and Local Mechanical Properties

Authors

  • Ilya A. Morozov Institute of Continuous Media Mechanics
  • Anton. Yu. Beliaev Perm State Univesity

DOI:

https://doi.org/10.17072/1993-0550-2025-2-36-46

Keywords:

polyurethane, elongation, atomic force microscopy, elastic modulus, indentation, finite element method

Abstract

Elastic polyurethane is a synthetic elastomer consisting of hard and soft blocks forming inhomogeneous supramolecular structures in the material. In this work, the microstructure and stiffness of two polyurethanes differing in the density of supramolecular stiff fibrillar mesh woven into a softer matrix have been investigated by atomic force microscopy. The evolution of local properties under uniaxial tension, including the ultimate tensile state, is shown. The indentation of a stretched elastic polymer was modeled by the finite element method; the dependence of stiffness on the elongation ratio was obtained. This result was used for comparison with experimental data and estimation of local elongation of the stretched polyurethane. The obtained results explain and expand the macroscopic mechanical properties of the polymers.

References

Petrović Z. S., Ferguson J. Polyurethane elastomers // Progress in Polymer Science. 1991. Vol. 16. P. 695–836. DOI:10.1016/0079-6700(91)90011-9 EDN:XSOOJE.

Sheth J. P., Klinedinst D. B., Wilkes G. L., Yilgor I., Yilgor E. Role of chain symmetry and hydrogen bonding in segmented copolymers with monodisperse hard segments // Polymer. 2005. Vol. 46. P. 7317–7322. DOI:10.1016/j.polymer.2005.04.041 EDN:KGQHRX.

Klinedinst D. B., Yilgör I., Yilgör E., Zhang M., Wilkes G. L. The effect of varying soft and hard segment length on the structure-property relationships of segmented polyurethanes based on a linear symmetric diisocyanate, 1,4-butanediol and PTMO soft segments // Polymer. 2012. Vol. 53. P. 5358–5366. DOI:10.1016/j.polymer.2012.08.005.

Tocha E., Janik H., Debowski M., Vancso G. J. Morphology of polyurethanes revisited by complementary AFM and TEM // Journal of Macromolecular Science, Part B. 2002. Vol. 41. P. 1291–1304. DOI:10.1081/MB-120013098.

Yilgör I., Yilgör E., Wilkes G. L. Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review // Polymer. 2015. Vol. 58. P. A1–A36.

Kimball M. E., Fielding-Russell G. S. Effect of cure temperature on urethane networks // Polymer. 1977. Vol. 18. P. 777–780. DOI:10.1016/0032-3861(77)90180-X.

Cheng B.-X., Gao W.-C., Ren X.-M., Ouyang X.-Y., Zhao Y., Zhao H., Wu W., Huang C.-X., Liu Y., Liu X.-Y., Li H.-N., Li R. K. Y. A review of microphase separation of polyurethane: Characterization and applications // Polymer Testing. 2022. Vol. 107. P. 107489. DOI:10.1016/ j.polymertesting.2022.107489 EDN: DCHRZG.

Zheng J., Ozisik R., Siegel R. W. Disruption of self-assembly and altered mechanical behavior in polyurethane/zinc oxide nanocomposites // Polymer. 2005. Vol. 46. P. 10873–10882. DOI:10.1016/j.polymer.2005.08.082 EDN: KGQCDR.

Zheng J., Ozisik R., Siegel R. W. Phase separation and mechanical responses of polyurethane nanocomposites // Polymer. 2006. Vol. 47. P. 7786–7794. DOI:10.1016/j.polymer.2006.08.068 EDN: KGQUDJ.

Larraza I., Alonso-Lerma B., Gonzalez K., Gabilondo N., Perez-Jimenez R., Corcuera M. A., Arbelaiz A., Eceiza A. Waterborne polyurethane and graphene/graphene oxide-based nanocomposites: Reinforcement and electrical conductivity // Express Polymer Letters. 2020. Vol. 14. P. 1018–1033. DOI:10.3144/expresspolymlett.2020.83 EDN:QLWLGR.

Kojio K., Kugumiya S., Uchiba Y., Nishino Y., Furukawa M. The Microphase-separated Structure of Polyurethane Bulk and Thin Films // Polymer Journal. 2009. Vol. 41 P. 118–124. DOI:10.1295/polymj.PJ2008186.

Takahashi A., Kita R., Kaibara M. Effects of thermal annealing of segmented-polyurethane on surface properties, structure and antithrombogenicity // Journal of Materials Science: Materials in Medicine. 2002. Vol. 13. P. 259–262. DOI:10.1023/A:1014054716444 EDN: AUXNEJ.

Li X., Lu Y., Wang H., Pöselt E., Eling B., Men Y. Crystallization of hard segments in MDI/BD-based polyurethanes deformed at elevated temperature and their dependence on the MDI/BD content // European Polymer Journal. 2017. Vol. 97. P. 423–436.

Christenson E. M., Anderson J. M., Hiltner A., Baer E. Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers // Polymer. 2005. Vol. 46. P. 11744–11754. DOI:10.1016/j.polymer.2005.08.083 EDN: KGQARP.

Scetta G., Euchler E., Ju J., Selles N., Heuillet P., Ciccotti M., Creton C. Self-Organization at the Crack Tip of Fatigue-Resistant Thermoplastic Polyurethane Elastomers // Macromolecules. 2021. Vol. 54. P. 8726–8737. DOI:10.1021/acs.macromol.1c00934 EDN: NRMZLQ.

Morozov I. A., Beliaev A. Yu., Scherban M. G. Effect of curing temperature on surface and subsurface properties of polyurethane elastomer // Materials Physics and Mechanics. 2023. Vol. 51. P. 107–118. DOI:10.18149/MPM.5162023_10 EDN: DWRZRT.

Johnson K. L., Kendall K., Roberts A. D. Surface energy and the contact of elastic solids // Proc. R. Soc. Lond. A. 1971. Vol. 324. P. 301–313. DOI:10.1098/rspa.1971.0141.

Arruda E. M., Boyce M. C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials // Journal of the Mechanics and Physics of Solids. 1993. V. 41. N. 2. P. 389–412. DOI:10.1016/0022-5096(93)90013-6.

Tereshatov V. V., Makarova M. A., Senichev V. Yu., Slobodinyuk A. I. Interrelationship between ultimate mechanical properties of variously structured polyurethanes and poly(urethane urea)s and stretching rate thereof // Colloid Polym Sci. 2012. Vol. 290. P. 641–651. DOI:10.1007/s00396-011-2585-7 EDN:PDTBQP.

Published

2025-07-15

How to Cite

Morozov И. А., & Beliaev А. Ю. (2025). Study of Stretched Polyurethanes Microstructure and Local Mechanical Properties. BULLETIN OF PERM UNIVERSITY. MATHEMATICS. MECHANICS. COMPUTER SCIENCE, (2 (69), 36–46. https://doi.org/10.17072/1993-0550-2025-2-36-46