Methods and Tools for Virtual Semantic Integration of Data from Distributed Heterogeneous Sources

Authors

  • Svetlana I. Chuprina Perm State Humanitarian Pedagogical University
  • Kseniya V. Gimasheva Perm State University

DOI:

https://doi.org/10.17072/1993-0550-2025-1-145-159

Keywords:

semantic data integration, virtual integration, ontology, ontology-driven development, data fabric technology

Abstract

The article is devoted to the natural language processing from distributed heterogeneous sources based on the principles of their virtual semantic integration. The main purpose of data integration is to provide the user with unified access to distributed data as a single virtual storage for performing natural language queries, regardless of the data storage format and location. The article discusses the main approaches focused on virtual semantic data integration, and describes the proposed concept of building an ontology driven instrumental environment based on Data Fabric technology, which allows to automate data processing via intermediate layer of ontologies in a unified form. The article describes NuCoBoShell that is the instrumental environment implementing the proposed approach. NuCoBoShell uses ontology-driven semantic integration mechanism to provide the answering, which, unlike traditional Internet answering services, provides the opportunity to obtain more pertinent answers automatically extracting the necessary information from not only heterogeneous web resources, but also text documents stored in accessible data warehouses and user's local computer without the need to copy data to a single repository.

References

Тузовский А.Ф., Ямпольский В.З. Интеграция информации с использованием технологий semantic web // Проблемы информатики. 2011. № 2. С. 51–58.

Ballard C. IBM Informix: Integration through data federation / C. Ballard, N. Davies, M. Gavazzi, J. Stephani, M. Lurie // IBM International Technical Support Organizat, 2003. 270 p. URL: http://www.iiug.org/library/ids/technical/sg247032.pdf (дата обращения: 30.06.2024).

Patel A., Debnath, N.C., Bhushan, B. (Eds.). Semantic Web Technologies: Research and Applications (1st ed.). CRC Press. 2022. 404 p. DOI: 10.1201/9781003309420.

Gruber T.R. A Translation approach to portable ontology specifications // Knowledge Acquisition. 1993. Vol. 5, № 2. P. 199–220.

Большакова Е.И. Автоматическая обработка текстов на естественном языке и анализ данных: учеб. пособие / Е.И. Большакова, К.В. Воронцов, Н.Э. Ефремова, Э.С. Клышинский, Н.В. Лукашевич, А.С. Сапин М.: НИУ ВШЭ, 2017. 269 с.

Chuprina S.I. Using Data Fabric Architecture to Create Personalized Visual Analytics Systems in the Field of Digital Medicine // Scientific visualization. 2023. Vol. 15(5). P. 50–63. DOI: 10.26583/sv.15.5.05.

Найденова, К.А., Невзорова О.А. Машинное обучение в задачах обработки естественного языка: обзор современного состояния исследований // Учен. зап. Казан. ун-та. Серия Физико-матем. науки. 2008. № 4. С. 5–24.

Нурутдинов А.Р., Латыпов Р.Х. Перспективы биоинспирированного подхода в разработке систем искусственного интеллекта (обзор тенденций) // Учен. зап. Ка-зан. ун-та. Сер. Физико-матем. науки. 2022. Т. 164, кн. 2–3. С. 244–265. DOI: 10.26907/2541-7746.2022.2-3.244-265.

Semantic Web W3C. URL: https://www.w3.org/standards/ (дата обращения: 30.06.2024).

Calvanese D., De Giacomo G., Lenzerini M. Ontology of integration and integration of ontologies // Proc. of the 14th Int. Workshop on Description Logics (DL 2001). 1-3 Au-gust 2001, Stanford, CA, USA. Vol. 49. P. 10–19.

Чуприна С.И., Гимашева К.В. Применение методов визуального анализа данных для выявления потребности в семантической интеграции данных // Труды между-нар. конф. по компьютерной графике и машинному зрению "Графикон 2024".17–19 сентября 2024, Омск. С. 389–402. DOI: 10.25206/978-5-8149-3873-2-2024-389-402.

Gomes-Perez A., Fernandez-Lopez M., Corcho O. Ontological Engineering: with examples from the areas of Knowledge Management, e-Commerce and the Semantic Web (1st ed.). Springer-Verlag, London. 2004. 403 p.

Davies J. Lightweight Ontologies // Theory and Applications of Ontology: Computer Applications. 2010. P. 197-229. DOI: 10.1007/978-90-481-8847-5_9.

Ryabinin K., Chuprina S. Development of ontology-based multiplatform adaptive scientific visualization system // Journal of Computational Science. Elsevier. 2015. Vol. 10. P. 370–381. DOI: 10.1016/j.jocs.2015.03.003.

Ryabinin K., Chuprina S., Belousov K. Ontology-Driven Automation of IoT-Based Human-Machine Interfaces Development // Computational Science – ICCS 2019 / Edit by J. M. F. Rodrigues. – Cham: Springer International Publishing, 2019. P. 110–124.

Chuprina S.I. Ontology-Driven Visual Analytics Software Development / S. Chuprina, K. Ryabinin, K. Matkin, D. Koznov// Programming and Computer Software. 2022. Т. 48, № 3. P. 208–214. DOI: https://doi.org/10.1134/ S0361768822030033.

Ryabinin K., Chuprina S., Labutin I. Tackling IoT Interoperability Problems with Ontology-Driven Smart Approach // Science and Global Challenges of the 21st Century - Science and Technology / Edit by A. Rocha, E. Isaeva. Cham: Springer International Publishing. 2022. P. 77–91.

Published

2025-03-31

How to Cite

Chuprina С. И., & Gimasheva К. В. (2025). Methods and Tools for Virtual Semantic Integration of Data from Distributed Heterogeneous Sources. BULLETIN OF PERM UNIVERSITY. MATHEMATICS. MECHANICS. COMPUTER SCIENCE, (1 (68), 145–159. https://doi.org/10.17072/1993-0550-2025-1-145-159