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The investigation of thermal convection of a fluid with the dependence of thermal diffusivity on
temperature in a vertical Hele—Shaw cell heated from below has been fulfilled theoretically. The ex-
pression for equilibrium temperature distribution in a cavity has been derived analytically. It has
been found that the dependence of temperature on the vertical coordinate looks like a square root
law. The linear stability of mechanical equilibrium state against small normal perturbations has been
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investigated by means of Galerkin method. It has been shown that the most dangerous perturbation
in a cavity under consideration is described by the mode which corresponds to the two-vortex steady
flow. The numerical simulation of over-critical steady and oscillatory flows has been carried out in
the approximation of plane trajectories. This simplification of theoretical model is consistent with all
experimental data on thermal convection in similar cavities. It has been shown that the inclusion of
the dependence of thermal diffusivity on temperature into the mathematical model leads to the “up—
down” symmetry breakdown for the small values of over-criticality.
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1. Introduction

1.1. Thermal convection in the cavities
of different shape

In experiments, the evolution of the spatial pattern
of convective flows is mainly determined by the shape
of the cavity and the type of heating induced. In the
case of a model infinite horizontal layer, steady flow
has the cellular form and the vortices size is compara-
ble with the thickness of the layer. But in a closed tank
there will be a discretisation of allowed wavelengths
and flow structure is strongly limited by the shape of a
cavity. The type of boundaries also play an important
role: the stability of a horizontal layer with free
boundaries is fundamentally different from one with
rigid boundaries [1]. Also, specific flows arise in cavi-
ties due to the particular thermal conditions or the
presence of any spatial symmetry.

1.2. Dependence of the Kkinetic coefficients
on thermodynamics parameters

In fluid dynamics the coefficient of thermal con-
ductivity and the coefficient of viscosity are usually
treated in most calculations as constants. While both
theoretically and experimentally, these coefficients can
be shown to depend on thermodynamic parameters,
the dependence of those coefficients on temperature or
pressure is usually neglected as these properties are
more often insignificant. For example, the dependence
of viscosity on pressure may be completely ignored
when dealing with an incompressible fluid. However
in the presence of a significant temperature gradient,
the dependence of those coefficients on temperature
may become substantial.

In [2,3] the temperature dependence of viscosity
was taken into account in order to explain the up-down
symmetry violation of steady and oscillatory convec-
tive flows in a vertical Hele—Shaw cell heated from the
bottom. Thus in the presence of strong environmental
conditions those dependencies can not be trivially ig-
nored.

1.3. Dependence of thermal diffusivity
on temperature

In the analysis of most of convective problems, the
coefficient of thermal diffusivity y is assumed to be
constant. In reality, it can depend both on temperature
and pressure from general point of view. However,
experiments have shown that the dependence of ther-
mal diffusivity on pressure is much less significant
than its dependence on temperature. While extremely
small value the dependence on pressure can be ne-
glected, the extent of the effect of temperature is less
clear. In particular, the dependence of thermal diffu-
sivity on temperature could help explain the symmetry
breakdown in convective flows in Hele—Shaw cell.

Free thermal convection in a vertical Hele-Shaw
cell has been studied thoroughly for a long time [4]. It
was shown experimentally and mathematically that the
convection threshold is determined by a steady flow in
a cavity heated from the below. The number of vorti-
ces is governed by the degree of the cell elongation
along horizontal axis. However the effect of the tem-
perature dependence of thermal diffusivity on the
boundary of stability and non-linear convective re-
gimes has not been examined yet. In particular the sta-
bility of these states with »(T) has not been studied in
detail and the effect could be observable and measure-
able in an experiment.

2. Statement of the problem
2.1. Hele-Shaw cell

Let us consider rectangular cavity with specific as-
pect ratio when the height and length are much greater
than the thickness (see Fig. 1). It means mathematical-
ly that h, I >> d. This cavity is called by the Hele—
Shaw cell [4].

The cavity is filled by a fluid with a temperature
dependent thermal conductivity. The Hele-Shaw cell
is heated from the bottom, @ is the temperature differ-
ence between upper and lower heat exchangers. The
approximation of plane trajectories is valid for a wide
range of the governing parameters. Even chaotic re-
gimes for large values of over-criticality visually have
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no transverse component of velocity (v, =0) and the
trajectories of liquid particles lie in the (x,y) plane.

y

-
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+d

Fig. 1. Geometry of the Hele—Shaw cell

2.2. Equations of thermal convection

Now let us take the well known generalized equa-
tions of the thermal convection in Boussinesq approx-
imation to describe the behaviour of the incompressi-
ble fluid in a Hele—Shaw cell. This system includes the
Navier—Stokes equation, generalized equation of heat
transfer and mass conservation law:

W,
ot

%+(W)T —div((T)VT), divi=0. (22)

(0V)o = —%prmn 9BT7, (2.1

Here v, p and T are dimensional fields of velocity,
pressure and temperature. Parameters v and y are the
coefficients of kinematic viscosity and thermal diffu-
sivity, respectively, g is the coefficient of thermal ex-
pansion, p is the average density of the fluid, g is the
gravitational acceleration, and y is the unit vector

oriented vertically upward. We assume the viscosity to
be constant to simplify our problem. On the other
hand, thermal diffusivity is determined by

X = K/(pcp) )

where xand C;, are the coefficient of thermal conduc-
tivity and heat capacity, respectively. The dependence
of y on temperature like in (2.2) comes from treating
the density and thermal capacity as constants.

Let us summarize experimental data [5, 6] and
suppose that the dependence of thermal diffusivity on
temperature can be expressed by the simple formula:

2(T) = xo (1+aT).

Here T'is the deviation of temperature on conventional
convective zero, « is dimensional material coefficient
which characterizes the dependence of thermal diffu-
sivity on temperature. Theoretically it can be negative
as well as positive. If « is negative, the full tempera-
ture additive in formula (2.3) must be sufficiently
small and have to be less than the unit. Note that ther-
mal diffusivity is essentially a positive parameter.

The sides of the cavity are supposed to be rigid,
therefore the velocity vanishes on the boundaries. As a
result of the heating from below the specific tempera-
ture distribution takes place on the boundary. Namely,
the unknown velocity and temperature fields in equa-
tions (2.1), (2.2) must satisfy to the following bounda-
ry conditions:

U.=0, T|.=f(xy).

These relations account for the existence of no slip
condition on all sides of the cell. Furthermore, the cav-
ity has boundaries with high thermal conductivity.

Let us fulfil the numerical analysis of the problem
(2.1), (2.2) in the terms of non-dimensional variables.
We shall use following set of units during the simula-
tion:

(2.3)

length [x y, 2] -d;
time [q4-dv,
velocity [v] - ol d;
temperature [T] - 6,
pressure [p] - pvyd .

We use the ordinary conventions in thermal convec-
tion: the viscous and thermal conductive units to
measure the time and velocity, respectively. The equa-
tions of thermal convection in non-dimensional form
can be written as

I PN 5 ;
E+ﬁ(vv)v_ Vp+Av+RaTy, (2.4)
pr%+(ﬁV)T:div(l(T)VT), divo =0, (25)
2(T)=1+¢T. (2.6)

There are three governing parameters in equations sys-
tem (2.4) — (2.6):

Ra:gﬂ@ds/v;(o, Pr=v/y,, &=a0@.

First and second parameters are the Rayleigh and
Prandtl numbers, correspondingly. Non-dimensional
parameter ¢ describes the dependence of thermal dif-
fusivity on temperature.

In our statement the conditions on the upper and
lower boundaries of the Hele—Shaw cell for the non-
dimensional fields of velocity and temperature have
the form:

:v=0,T=1
H: v=0,T=0.

(2.7)

y
y
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Note that in experiment the variation of Rayleigh
number implies usually the change of temperature dif-
ference on the upper and lower boundaries. But pa-
rameter ¢ also depends on @. Thus the growth of Ray-
leigh number for the fixed & must be interpreted as the
increase of the buoyancy force in comparison with the
effect of thermal diffusivity dependence on tempera-
ture for the constant heating.

In addition it is important to estimate the value of
parameter & for any typical case. Thermal diffusivity
and kinematic viscosity for metal melts can be evalu-
ated as y ~ 10° m%s, v~ 107 m?s (Pr ~ 10%) and g ~
10* 1/K. For the value of Rayleigh number 3-10°
(over-criticality is equal to 1.07 in Hele-Shaw cell
with aspect ratio for wide boundaries 20:40) and
thickness 3 mm (d = 1.5 mm) the character tempera-
ture difference on the heat exchangers is estimated as
4.4 K. Thus, for o ~ 0.05 1/K [5] non-dimensional pa-
rameter ¢is evaluated as 0.22.

2.3. Mechanical equilibrium state

The mechanical equilibrium state takes place for
small values of Rayleigh number. Mechanical equilib-
rium is characterized by the following conditions:

o/ot=0, v=0.
As a result, the equations system (2.4), (2.5) turns into

VT, x7=0, div{z(T,)VT,}=0.

0.6

0.4

0.2

0

0 10 20 30
Fig. 2. Equilibrium temperature distribution along
vertical coordinate for different values of ¢; the curves
numbers correspond to: 1 —¢=0.8,2-¢=05,3-¢
=02,4-¢=0

y 40

The exact solution of these equations has to be
found taking into account the expression (2.6) for
thermal diffusivity and boundary conditions for tem-

perature. For different signs of the & the solution can
be written in following form:

_1 1) 2\y
where H is the non-dimensional height. The lower
mathematical signs correspond to negative values of &,
upper signs describe the temperature distribution for
positive &.

The curves characterizing the temperature distribu-
tion in dependence on vertical coordinate are present-
ed in Fig. 2 for different values of &.

In spite of linearity of the expression (2.6) for x(T)
the profile of the temperature is appreciably nonlinear
in the state of mechanical equilibrium. Nevertheless, it
is easy to see that the dependence becomes linear in
the limiting case = 0.

(2.8)

3. Linear stability problem

Let us divide the full fields of velocity, temperature
and pressure into the two parts which correspond to
basic state (index 0) and small non-stationary pertur-
bations (prime):

v=0", p=po+p, T=T,+T". (3.1)

Equilibrium state in Hele—Shaw cell is considered as a
basic one therefore v, = 0. Let us substitute (3.1) into
the starting equations (2.4), (2.5) and linearize them.
The resulting evolutionary equations for small disturb-
ances have the form:

00/ot =—Vp + Av + RaT7 (3.2)

ProT/ot +(0V) Ty =
= ediv{TVTo} +div{(1+£To)VT}, (3.3)

divo =0. (3.4)
Here v, p and T are the perturbations of velocity,
pressure and temperature, correspondingly. The lateral
vertical sides of the cavity are isothermal. In addition
on upper and lower heat exchangers the boundary
conditions for unknown fields of the velocity and de-
viation of temperature from equilibrium profile have
to be written as

y=0H ©=0,T=0. (3.5)

Preliminarily, it is convenient to rewrite initial dif-
ferential equations (3.2)—(3.4) in the terms of tempera-
ture T and stream function w. The solution of the
boundary-value problem (3.2)—(3.4), (3.5) has the
form of normal monotonous modes:

T,y ~ (9,0) ML cos(%j. (3.6)
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Here 9, o are the amplitudes of the respective pertur-
bations; L is non-dimensional length, 1 is an exponen-
tial decay rate, n is the integer value that characterizes
the periodicity of the perturbation along the x axis.
The stream function is connected with the components
of velocity by means of relations

U, =0y/0y, v, =-0y/0x. (3.7

There are two distinct cases: ¢ is positive or nega-
tive. Later we will only examine the case with £> 0 in
our calculations that means the growth of thermal dif-
fusivity with the temperature.

In the following stage we assume the decrement to
be equal zero. The perturbations of this type do not
grow and do not decrease. These perturbations are
called by the neutral one. In this case Rayleigh number
Ra plays the role of the eigenvalue in the spectral am-
plitude problem. It depends on all parameters like H,
L, n and & It should be emphasized that the linear
problem for small disturbances does not contain the
Prandtl number. So the boundary of stability does not
depend on this parameter.

3.1. Limiting case of £=0

At first let us consider the limiting case of £ = 0
and find analytically the expression for neutral curves
i.e. the function of critical Rayleigh number in de-
pendence on the parameters of the problem. Setting
the exponential decay rate A to zero, we shall be inter-
ested in neutral disturbances. If dependence of thermal
diffusivity on temperature is absent, the temperature
distribution along vertical is linear and the equations
system for amplitudes & and & of small perturbations

can be represented in the following form [3]:
105 20,80 72
Hox ox?2 oy?2 4 7'
20 _72 A 2 _RaQY _
AZE 7 Mé Raax 0.
Here A, is the plane Laplacian. We shall search the so-
lution of these equations in the form of simple har-

monics

(3.8)

(3.9)

& =asin(znx/L)sin(zmy/H),
0 = beos(znx/ L)sin(zmy/ H),

where n=1,2,3 ..., m=1,2,3 ... After the substitu-
tion of these functions into the equations system (3.8),
(3.9) the dispersion relation gives:

2
4,2 2 2 2 2
7 L°H | m n m n 1

The analysis of this formula for L = 20, H = 40 shows
that the three lower values of the Rayleigh number in
our spectrum correspond to the modes (2,1), (3,1) and
(1,1) (here the indexes describe the periodicity of the
flow along axes x, y and conform to the different val-
ues of nand m, respectively).

3.2. General case of arbitrary ¢

In general case for arbitrary values of parameter ¢
the calculations were fulfilled by means of Galerkin
method [8, 9]. The coefficients in equations (3.2),
(3.3) depend on only y. So the solution on x can be
found in the form of simple harmonics (3.6). As a re-
sult the system of two ordinary differential equations
with variable coefficients for amplitudes o and % takes
place

2
_m dl, 0:25dT° 9’+5d To 9+
L dy dy dy2

2

+(1+eT, )[19"-(ﬂ)23-”—9} (3.11)
0 L 47 "

2 4
v mn " mn
oz _Z(Tj o +( Lj lo

2 2
3 v (7 m g _
‘T(U (—Lj GJ-{-RCI.—L 9=0.(3.12)

In a limiting case of & = 0 the analysis of (3.8), (3.9)
leads to important result that the three most dangerous
mode for the cavity with the aspect ratio 2:20:40 are
(2,1), (3,1) and (1,1).

Thus, let us apply the Galerkin’s procedure for
both unknown functions o and & with only one basis
function: (o,9) ~sin(zy/H).

Termwise integration of (3.11), (3.12) with the
weight was carried out numerically. The resulting data
for critical Rayleigh numbers in dependence on pa-
rameter ¢ are presented in Fig. 3 in the case of a cavity
with L = 20, H = 40. As parameter & increases, the
critical Rayleigh number increased too: when ¢ = 0,
Ra. = 281 and when ¢= 0.8, Ra, = 417.

500
450
400
350
300

250
0 0.2 0.4 0.6 0.8 € 1
Fig. 3. Critical Rayleigh number as a function of pa-
rameter ¢ for three modes; the numbers of curves cor-
respondtol -n=2,2-n=3,3-n=1



60

P. K. Hakuaou, B. A. /lemun

In the limit & — 0, the critical Rayleigh numbers
agree with the values obtained from formula (3.10). It
is seen that the critical Rayleigh number grows monot-
onously with the increase of ¢ for all modes according
to an approximately linear law.

4. Non-linear regimes of convection

The geometry of the problem permits to use the
approximation of plane trajectories. As a result it is
convenient to execute numerical simulation on the ba-
sis of the full non-linear equations written in terms of
stream function and vorticity. Let us exclude the pres-
sure and introduce stream function by the same way as
in the course of the solution of the linear problem. Fi-
nally the standard system of non-linear equations in
terms of the stream function y, vorticity ¢ and tem-
perature T has the form

op 1(65”6"’ 6¢6WJ:A¢—Ra£ (4.1)

ot Prlox oy oy ox ox

oT

E+(5V)T =div(x(T)VT), p=My. (4.2)

Boundary conditions for equations system (4.1), (4.2)
have to be written in the form:

x=0,L: w=wy/=0,T=To(y);

2 2
8e| (09 09
—|| = — | |. (44
+37r{(6xj J{ayj J (44)
Boundary conditions for equations system (4.3), (4.4)
have to be rewritten in the form:

=0; (4.5)
0 (4.6)

4.1. Description of numerical procedure

50

40

0

y=0,H: v=ys=0,T=1,0.

It is convenient to divide the full temperature field on
equilibrium part To(y) and deviation Ti(X, y, t). The
small thickness of the cavity permits to impose the cer-

320 360 400

Ra
Fig. 4. The maximum of stream function in dependence
on Rayleigh number for different values of parameter &;
the numbers of curves correspond to 1 — £ =0.2, 2 — ¢

440 480

tain form of the solution depending on the transversal
coordinate z and apply the Galerkin procedure. Let us
separate the variables and search the solution as

w =o(x,y,t)cos(nz/2),
T, = 9(x,y,t)cos(7z/2),

where the o, 4 are the amplitudes of stream function
and temperature which depend on time and coordi-
nates in the plane of wide boundaries. After the aver-
aging on z with the corresponding weight the equa-
tions for amplitudes can be written as

%Jr 8 ((%580' 6(/586}

ot 3zPr{oxoy oy ox
2
09
=Mg-F-¢-RaZ>,  (43)
pr0%, 8 (0800 0800 dlo do _
ot 3zx\0x 0y 0y ox dy ox
. dT, 88 s
=2¢ & ay+(1+gTo)(A13 1 9J+
2 2
ve8To g, 880\ g 7 glg, om g7,
ay? 37 4 3

=0.5,3-¢=0.8

The method of finite differences was applied to
calculate over-critical regimes. Numerical code was
written in programming language Fortran-90. The
problem was considered in terms of the vorticity and
stream function i.e. the so-called two-fields method of
the solution was used. Explicit scheme was realized to
simulate the dynamics of convective system. The basic
mesh contained 37:31 nodes. The first order coordi-
nate derivatives were approximated by the central dif-
ferences with the second order accuracy. The time de-
rivative was expressed by the one-sided difference
with the first order accuracy. The Laplace operator
was factorized on the base of the three point scheme
and had the second order accuracy. The values of vor-
ticity on the lateral boundaries were found over the
formula of Thom and Aplte [10]. The step size of the
time was calculated in accordance with the necessity
of the stability of numerical procedure over the formu-
la

r= min( h%.h} )/46,
where hx, hy are the coordinate steps on xand y, J'is

the empirical parameter greater than unit. The Poisson
equation for the stream function y was solved by the



Tennoeas konsexyus 6 svevxe Xene — LLloy npu nanuyuu y sHcuokocmu 3a6UCUMOCIU ... 61

40

35 ! =

30 -

254 ® L

20+ -

0
0 5‘ lb lg X 20 (a)

40
wn
354 > 8 L
2 ! i
w
30 -
251 o u
2
20 5 -
P ¢
$ 2
[N
15 -
10+ -
5. L
0 T T T
0 5 10 15

X 20 ()

Fig. 5. The isolines of stream function for steady two- Fig. 6. The isolines of temperature for steady two-

vortex flow

method of simple iterations [10]. Over the numerical
simulation pseudoviscosity method was used to get the
snap fields of the temperature T and the stream func-
tion y. To analyze the oscillatory regimes maximum
and minimum values of stream function v, and w;;,
were calculated.

4.2. Results and discussion

The numerical calculations with isothermal wide
boundaries of the Hele—Shaw cell yielded the follow-
ing results. The first over-critical regime with the low-
est value of Ra was found to correspond to the charac-
teristic two vortex flow. This result was independent
of the value of & For ¢ = 0.2, the relation between the
flow regime and Ra was investigated in detail.

At low Rayleigh numbers below Ra = 330, a sta-
tionary equilibrium state flow was observed. As Ra
was increased, we found a two vortex flow regime
with left-right symmetry but this flow had no up-down
symmetry. The isolines of stream function and temper-
ature are shown in Figs. 5, 6 for Ra = 360, Pr=7, and
¢=0.5. The displacement of vortices to the upper part
of the cavity is observed. There is a simple explana-
tion of this effect.

The bowed equilibrium profile of temperature can
be replaced approximately by the broken line with two
straight pieces (dashed lines, Fig. 2). There are two re-
gions in a cavity at the plane of wide boundaries with
different characteristic values of temperature gradient.
For small values of super-criticality the higher part of
temperature distribution with large derivative induces
convection but the lower part of the broken line may

vortex flow

correspond to the small temperature gradient which is
not sufficient to produce convective motion. Therefore
the stagnant zone has been formed in lower part of the
Hele—-Shaw cell. The space with the slow movement
can be observed from the fields of stream function and
temperature (Figs. 5, 6).

At Ra = 455 and beyond, we found an oscillatory
four vortex flow with reunification of corner vortices.
Initially the oscillations in this regime were periodic
and contained only one frequency at Ra = 455. How-
ever in the range 460 < Ra < 500, the dependence of
Winax ON time clearly contained more frequencies and a
Fourier analysis is required to understand these com-
plexities. We also looked at the dependence of y,,, on
Ra with different values of parameter & for flows over
the threshold of convection. It can be seen that for all
values of ¢, y,,, increases with the Rayleigh number.

The x-intercepts of these graph had to be extrapo-
lated from the graphs as calculating the value of ,,,
close to zero would have large errors induced by our
numerical approach for big values of ¢ Furthermore,
the x-intercepts obtained here are close to the projec-
tions that can be obtained from Fig. 3. The difference
in the two values obtained is due to the error intro-
duced by the using of only one basis function in Ga-
lerkin’s method.

If we introduce point perturbation at the initial
moment of time, the two-vortex steady regime is char-
acterised by the down flow along lateral sides and up-
ward movement along centerline. This flow gives the
thermal spot in central part of the cavity (Fig. 6).
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Fig. 7. Oscillatory four-vortex regime with reunification of corner vortices

The period 7 of oscillations for different values of
Rayleigh number

Ra 455 460 465 | 470

7 (non-dimensional | 398 392 360 | 282
units)

7 (minutes) 14.9 14.7 135 | 10.6

It was emphasized that oscillatory regimes origi-
nate for moderate values of super-criticality. In wide
range of governing parameter Ra there are different
variations of the four vortex flow with alternating reu-
nification of corner vortices. Characteristic fields of
stream function in different moments time are present-
ed in Fig. 7 for Ra = 500. The Fig. 8 demonstrates that
the oscillations become more non-linear and their am-
plitude increases with the growth of governing param-
eter Ra. At the same time the period of oscillations has
the tendency to be smaller with the increase of Ray-
leigh number. The numerical values of period can be

found in the table. For large values of super-criticality
this reunification of corner vortices becomes non-
periodical.

5. Conclusion

Convective flows in a Hele-Shaw cell have been in-
vestigated theoretically when the dependence of ther-
mal diffusivity on temperature is taken into account. It
has been shown for the cavity with aspect ratio
2:20:40 that the inclusion of this factor in our model
leads to the symmetry breakdown of the steady two-
vortex flow for small values of over-criticality. Visual-
ly it looks as the displacement of vortices to upper part
of the cavity and formation of the stagnation zone near
the lower boundary. The different oscillatory flows
originate for bigger values of Rayleigh number. It was
found that these oscillatory regimes correspond to var-
ious deviations on the well-known four-vortex flow
with alternating reunification of opposite corner vorti-
ces.
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Fig. 8. Dependence of the maximum of stream function on time for different values of Rayleigh number; the

fragments correspond to (a) — Ra = 455, (b) — Ra = 460,
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