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Проведено теоретическое исследование тепловой конвекции в подогреваемой снизу верти-

кальной ячейке Хеле–Шоу при учете зависимости температуропроводности жидкости от тем-

пературы. Получено распределение температуры в полости, соответствующее состоянию ме-

ханического равновесия. Оказалось, что в состоянии равновесия температура зависит от 

вертикальной координаты по корневому закону. Исследована устойчивость состояния меха-

нического равновесия относительно малых нормальных возмущений. Показано, что наиболее 

опасным возмущением для рассматриваемой геометрии оказалась мода, соответствующая 

двухвихревому стационарному течению. Выполнен расчет надкритических стационарных и 

нестационарных движений в плоскости широких граней полости. Численное моделирование 

проводилось в приближении плоских траекторий, которое хорошо согласуется со всеми из-

вестными экспериментальными и теоретическими данными по конвективным течениям в по-

добных полостях. Показано, что включение в модель механизма зависимости температуро-

проводности от температуры приводит к нарушению симметрии «верх–низ» течений при 

малых значениях надкритичности. 
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The investigation of thermal convection of a fluid with the dependence of thermal diffusivity on 

temperature in a vertical Hele–Shaw cell heated from below has been fulfilled theoretically. The ex-

pression for equilibrium temperature distribution in a cavity has been derived analytically. It has 

been found that the dependence of temperature on the vertical coordinate looks like a square root 

law. The linear stability of mechanical equilibrium state against small normal perturbations has been 
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investigated by means of Galerkin method. It has been shown that the most dangerous perturbation 

in a cavity under consideration is described by the mode which corresponds to the two-vortex steady 

flow. The numerical simulation of over-critical steady and oscillatory flows has been carried out in 

the approximation of plane trajectories. This simplification of theoretical model is consistent with all 

experimental data on thermal convection in similar cavities. It has been shown that the inclusion of 

the dependence of thermal diffusivity on temperature into the mathematical model leads to the “up–

down” symmetry breakdown for the small values of over-criticality. 
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1. Introduction 

1.1. Thermal convection in the cavities  

of different shape 

In experiments, the evolution of the spatial pattern 

of convective flows is mainly determined by the shape 

of the cavity and the type of heating induced. In the 

case of a model infinite horizontal layer, steady flow 

has the cellular form and the vortices size is compara-

ble with the thickness of the layer. But in a closed tank 

there will be a discretisation of allowed wavelengths 

and flow structure is strongly limited by the shape of a 

cavity. The type of boundaries also play an important 

role: the stability of a horizontal layer with free 

boundaries is fundamentally different from one with 

rigid boundaries [1]. Also, specific flows arise in cavi-

ties due to the particular thermal conditions or the 

presence of any spatial symmetry.  

1.2. Dependence of the kinetic coefficients  

on thermodynamics parameters  

In fluid dynamics the coefficient of thermal con-

ductivity and the coefficient of viscosity are usually 

treated in most calculations as constants. While both 

theoretically and experimentally, these coefficients can 

be shown to depend on thermodynamic parameters, 

the dependence of those coefficients on temperature or 

pressure is usually neglected as these properties are 

more often insignificant. For example, the dependence 

of viscosity on pressure may be completely ignored 

when dealing with an incompressible fluid. However 

in the presence of a significant temperature gradient, 

the dependence of those coefficients on temperature 

may become substantial. 

 

In [2,3] the temperature dependence of viscosity 

was taken into account in order to explain the up-down 

symmetry violation of steady and oscillatory convec-

tive flows in a vertical Hele–Shaw cell heated from the 

bottom. Thus in the presence of strong environmental 

conditions those dependencies can not be trivially ig-

nored. 

1.3. Dependence of thermal diffusivity  

on temperature 

In the analysis of most of convective problems, the 

coefficient of thermal diffusivity  is assumed to be 

constant. In reality, it can depend both on temperature 

and pressure from general point of view. However, 

experiments have shown that the dependence of ther-

mal diffusivity on pressure is much less significant 

than its dependence on temperature. While extremely 

small value the dependence on pressure can be ne-

glected, the extent of the effect of temperature is less 

clear. In particular, the dependence of thermal diffu-

sivity on temperature could help explain the symmetry 

breakdown in convective flows in Hele–Shaw cell. 

Free thermal convection in a vertical Hele–Shaw 

сell has been studied thoroughly for a long time [4]. It 

was shown experimentally and mathematically that the 

convection threshold is determined by a steady flow in 

a cavity heated from the below. The number of vorti-

ces is governed by the degree of the cell elongation 

along horizontal axis. However the effect of the tem-

perature dependence of thermal diffusivity on the 

boundary of stability and non-linear convective re-

gimes has not been examined yet. In particular the sta-

bility of these states with (T) has not been studied in 

detail and the effect could be observable and measure-

able in an experiment. 

2. Statement of the problem 

2.1. Hele–Shaw cell 

Let us consider rectangular cavity with specific as-

pect ratio when the height and length are much greater 

than the thickness (see Fig. 1). It means mathematical-

ly that h, l >> d. This cavity is called by the Hele–

Shaw cell [4].  

The cavity is filled by a fluid with a temperature 

dependent thermal conductivity. The Hele–Shaw cell 

is heated from the bottom,  is the temperature differ-

ence between upper and lower heat exchangers. The 

approximation of plane trajectories is valid for a wide 

range of the governing parameters. Even chaotic re-

gimes for large values of over-criticality visually have 
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no transverse component of velocity ( 0zv ) and the 

trajectories of liquid particles lie in the (x,y) plane. 

 

 

Fig. 1. Geometry of the Hele–Shaw cell 

2.2. Equations of thermal convection 

Now let us take the well known generalized equa-

tions of the thermal convection in Boussinesq approx-

imation to describe the behaviour of the incompressi-

ble fluid in a Hele–Shaw cell. This system includes the 

Navier–Stokes equation, generalized equation of heat 

transfer and mass conservation law:  

  
1v

v v p v T
t

  



       


g ,  (2.1) 

    div ( )
T

v T T T
t




   


,   div 0v . (2.2) 

Here v , p and T are dimensional fields of velocity, 

pressure and temperature. Parameters ν and χ are the 

coefficients of kinematic viscosity and thermal diffu-

sivity, respectively,  is the coefficient of thermal ex-

pansion, ρ is the average density of the fluid, g is the 

gravitational acceleration, and   is the unit vector 

oriented vertically upward. We assume the viscosity to 

be constant to simplify our problem. On the other 

hand, thermal diffusivity is determined by 

)( pC  , 

where  and Cp are the coefficient of thermal conduc-

tivity and heat capacity, respectively. The dependence 

of  on temperature like in (2.2) comes from treating 

the density and thermal capacity as constants.  

Let us summarize experimental data [5, 6] and 

suppose that the dependence of thermal diffusivity on 

temperature can be expressed by the simple formula: 

  ( ) 1oT T    .  (2.3) 

Here T is the deviation of temperature on conventional 

convective zero,  is dimensional material coefficient 

which characterizes the dependence of thermal diffu-

sivity on temperature. Theoretically it can be negative 

as well as positive. If  is negative, the full tempera-

ture additive in formula (2.3) must be sufficiently 

small and have to be less than the unit. Note that ther-

mal diffusivity is essentially a positive parameter. 

The sides of the cavity are supposed to be rigid, 

therefore the velocity vanishes on the boundaries. As a 

result of the heating from below the specific tempera-

ture distribution takes place on the boundary. Namely, 

the unknown velocity and temperature fields in equa-

tions (2.1), (2.2) must satisfy to the following bounda-

ry conditions:  

0v

 ,    ( , )T f x y


 . 

These relations account for the existence of no slip 

condition on all sides of the cell. Furthermore, the cav-

ity has boundaries with high thermal conductivity. 

Let us fulfil the numerical analysis of the problem 

(2.1), (2.2) in the terms of non-dimensional variables. 

We shall use following set of units during the simula-

tion: 

length [x, y, z] – d; 

time  [t] – d2
/; 

velocity  [v] – o/d; 

temperature [T] – ; 

pressure  [p] – o/d
2
. 

We use the ordinary conventions in thermal convec-

tion: the viscous and thermal conductive units to 

measure the time and velocity, respectively. The equa-

tions of thermal convection in non-dimensional form 

can be written as 

  
1

Ra
Pr

v
v v p v T

t



     


,  (2.4) 

    Pr div ( )
T

v T T T
t




   


,   div 0v , (2.5) 

 ( ) 1T T   .  (2.6) 

There are three governing parameters in equations sys-

tem (2.4) – (2.6): 

3Ra g  od ,   Pr o  ,     . 

First and second parameters are the Rayleigh and 

Prandtl numbers, correspondingly. Non-dimensional 

parameter  describes the dependence of thermal dif-

fusivity on temperature. 

In our statement the conditions on the upper and 

lower boundaries of the Hele–Shaw cell for the non-

dimensional fields of velocity and temperature have 

the form:  

 
0 : 0, 1,

: 0, 0.

  

  

y v T

y H v T
 (2.7) 
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Note that in experiment the variation of Rayleigh 

number implies usually the change of temperature dif-

ference on the upper and lower boundaries. But pa-

rameter  also depends on . Thus the growth of Ray-

leigh number for the fixed  must be interpreted as the 

increase of the buoyancy force in comparison with the 

effect of thermal diffusivity dependence on tempera-

ture for the constant heating.  

In addition it is important to estimate the value of 

parameter  for any typical case. Thermal diffusivity 

and kinematic viscosity for metal melts can be evalu-

ated as   10
-6

 m
2
/s,   10

-7
 m

2
/s (Pr  10

-2
) and   

10
-4

 1/K. For the value of Rayleigh number 310
2
 

(over-criticality is equal to 1.07 in Hele–Shaw cell 

with aspect ratio for wide boundaries 20:40) and 

thickness 3 mm (d = 1.5 mm) the character tempera-

ture difference on the heat exchangers is estimated as 

4.4 K. Thus, for   0.05 1/К [5] non-dimensional pa-

rameter  is evaluated as 0.22. 

2.3. Mechanical equilibrium state 

The mechanical equilibrium state takes place for 

small values of Rayleigh number. Mechanical equilib-

rium is characterized by the following conditions: 

=0t  ,   =0v . 

As a result, the equations system (2.4), (2.5) turns into 

0oT   ,    div ( ) 0o oT T  . 

 
Fig. 2. Equilibrium temperature distribution along 

vertical coordinate for different values of ; the curves 

numbers correspond to: 1 –  = 0.8, 2 –  = 0.5, 3 –  

= 0.2, 4 –  = 0 

 

The exact solution of these equations has to be 

found taking into account the expression (2.6) for 

thermal diffusivity and boundary conditions for tem-

perature. For different signs of the  the solution can 

be written in following form:  

 
2

0
1 1 2

1 1
  

   
       

   

y
T

H
,  (2.8) 

where H is the non-dimensional height. The lower 

mathematical signs correspond to negative values of , 
upper signs describe the temperature distribution for 

positive .  
The curves characterizing the temperature distribu-

tion in dependence on vertical coordinate are present-

ed in Fig. 2 for different values of . 

In spite of linearity of the expression (2.6) for (T) 

the profile of the temperature is appreciably nonlinear 

in the state of mechanical equilibrium. Nevertheless, it 

is easy to see that the dependence becomes linear in 

the limiting case  = 0. 

3. Linear stability problem 

Let us divide the full fields of velocity, temperature 

and pressure into the two parts which correspond to 

basic state (index 0) and small non-stationary pertur-

bations (prime): 

vv 


,   ppp o  ,   TTT o  .        (3.1) 

Equilibrium state in Hele–Shaw cell is considered as a 

basic one therefore 0ov . Let us substitute (3.1) into 

the starting equations (2.4), (2.5) and linearize them. 

The resulting evolutionary equations for small disturb-

ances have the form: 

 Rav t p v T       ,   (3.2) 

  0Pr T t v T       

     0 0div div 1T T T T      ,  (3.3) 

divv


 = 0.                             (3.4) 

Here v


, p and T are the perturbations of velocity, 

pressure and temperature, correspondingly. The lateral 

vertical sides of the cavity are isothermal. In addition 

on upper and lower heat exchangers the boundary 

conditions for unknown fields of the velocity and de-

viation of temperature from equilibrium profile have 

to be written as 

 y = 0, H:     0v


, 0T .  (3.5) 

Preliminarily, it is convenient to rewrite initial dif-

ferential equations (3.2)–(3.4) in the terms of tempera-

ture T and stream function . The solution of the 

boundary-value problem (3.2)–(3.4), (3.5) has the 

form of normal monotonous modes: 

 ,T      








2
cos,

z
ee

Lxint 



. (3.6) 



Тепловая конвекция в ячейке Хеле – Шоу при наличии у жидкости зависимости … 

  

59 

Here ,  are the amplitudes of the respective pertur-

bations; L is non-dimensional length,  is an exponen-

tial decay rate, n is the integer value that characterizes 

the periodicity of the perturbation along the x axis. 

The stream function is connected with the components 

of velocity by means of relations 

 
xv y   , yv x   .  (3.7) 

There are two distinct cases:  is positive or nega-

tive. Later we will only examine the case with  > 0 in 

our calculations that means the growth of thermal dif-

fusivity with the temperature.  

In the following stage we assume the decrement to 

be equal zero. The perturbations of this type do not 

grow and do not decrease. These perturbations are 

called by the neutral one. In this case Rayleigh number 

Ra plays the role of the eigenvalue in the spectral am-

plitude problem. It depends on all parameters like H, 

L, n and . It should be emphasized that the linear 

problem for small disturbances does not contain the 

Prandtl number. So the boundary of stability does not 

depend on this parameter. 

3.1. Limiting case of  = 0 

At first let us consider the limiting case of  = 0 

and find analytically the expression for neutral curves 

i.e. the function of critical Rayleigh number in de-

pendence on the parameters of the problem. Setting 

the exponential decay rate  to zero, we shall be inter-

ested in neutral disturbances. If dependence of thermal 

diffusivity on temperature is absent, the temperature 

distribution along vertical is linear and the equations 

system for amplitudes  and  of small perturbations 

can be represented in the following form [3]: 

 
2 2 2

2 2

1

4H x x y

  
  

  

   
 , (3.8) 

 
2

2
11 Ra 0

4 x

 
 


    


.  (3.9) 

Here 1 is the plane Laplacian. We shall search the so-

lution of these equations in the   form of simple har-

monics 

   sin sina nx L my H   , 

   HmyLnxb  sincos , 

where n = 1, 2, 3 …, m = 1, 2, 3 … After the substitu-

tion of these functions into the equations system (3.8), 

(3.9) the dispersion relation gives: 

 

2
4 2 2 2 2 2

c 2 2 2 2 2

1
Ra

4

L H m n m n

n H L H L

   
       

  
. (3.10) 

The analysis of this formula for L = 20, H = 40 shows 

that the three lower values of the Rayleigh number in 

our spectrum correspond to the modes (2,1), (3,1) and 

(1,1) (here the indexes describe the periodicity of the 

flow along axes x, y and conform to the different val-

ues of n and m, respectively). 

3.2. General case of arbitrary  

In general case for arbitrary values of parameter  
the calculations were fulfilled by means of Galerkin 

method [8, 9]. The coefficients in equations (3.2), 

(3.3) depend on only y. So the solution on x can be 

found in the form of simple harmonics (3.6). As a re-

sult the system of two ordinary differential equations 

with variable coefficients for amplitudes  and  takes 

place 

  


2

2

2
dy

Td

dy

dT

dy

dT

L
n ooo  

  






















 







4
1

22

L
n

To , (3.11) 

 
















 







42

2
L
n

L
nIV

 

 0
4

22























 








L
n

Ra
L
n

. (3.12) 

In a limiting case of  = 0 the analysis of (3.8), (3.9) 

leads to important result that the three most dangerous 

mode for the cavity with the aspect ratio 2:20:40 are 

(2,1), (3,1) and (1,1). 

Thus, let us apply the Galerkin’s procedure for 

both unknown functions  and  with only one basis 

function:  ( ) sin, ~ y H   . 

Termwise integration of (3.11), (3.12) with the 

weight was carried out numerically. The resulting data 

for critical Rayleigh numbers in dependence on pa-

rameter  are presented in Fig. 3 in the case of a cavity 

with L = 20, H = 40. As parameter  increases, the 

critical Rayleigh number increased too: when  = 0, 

Rac = 281 and when  = 0.8, Rac = 417. 

 
 

 
Fig. 3. Critical Rayleigh number as a function of pa-

rameter  for three modes; the numbers of curves cor-

respond to 1 – n =2, 2 – n =3, 3 – n =1 
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In the limit   0, the critical Rayleigh numbers 

agree with the values obtained from formula (3.10). It 

is seen that the critical Rayleigh number grows monot-

onously with the increase of  for all modes according 

to an approximately linear law. 

4. Non-linear regimes of convection 

The geometry of the problem permits to use the 

approximation of plane trajectories. As a result it is 

convenient to execute numerical simulation on the ba-

sis of the full non-linear equations written in terms of 

stream function and vorticity. Let us exclude the pres-

sure and introduce stream function by the same way as 

in the course of the solution of the linear problem. Fi-

nally the standard system of non-linear equations in 

terms of the stream function , vorticity  and tem-

perature T has the form 

 
x
T

xyyxt 

































Ra

Pr

1



,  (4.1) 

    div ( )
T

v T T T
t




   


,  = 1. (4.2) 

Boundary conditions for equations system (4.1), (4.2) 

have to be written in the form: 

x = 0, L:    = y = 0, T = T0(y); 

y = 0, H:    = x = 0, T = 1, 0. 

It is convenient to divide the full temperature field on 

equilibrium part To(y) and deviation T1(x, y, t). The 

small thickness of the cavity permits to impose the cer-

tain form of the solution depending on the transversal 

coordinate z and apply the Galerkin procedure. Let us 

separate the variables and search the solution as  

 2cos),,( ztyx   ,  

 1 ( )cos 2T x,y,t z  , 

where the ,  are the amplitudes of stream function 

and temperature which depend on time and coordi-

nates in the plane of wide boundaries. After the aver-

aging on z with the corresponding weight the equa-

tions for amplitudes can be written as 
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Boundary conditions for equations system (4.3), (4.4) 

have to be rewritten in the form: 

 x = 0, L:    = y = 0,  = 0;  (4.5) 

 y = 0, H:    = x = 0,  = 0.  (4.6) 

4.1. Description of numerical procedure 

 
Fig. 4. The maximum of stream function in dependence 

on Rayleigh number for different values of parameter ; 

the numbers of curves correspond to 1 –  =0.2, 2 –  

=0.5, 3 –  =0.8 

 

The method of finite differences was applied to 

calculate over-critical regimes. Numerical code was 

written in programming language Fortran-90. The 

problem was considered in terms of the vorticity and 

stream function i.e. the so-called two-fields method of 

the solution was used. Explicit scheme was realized to 

simulate the dynamics of convective system. The basic 

mesh contained 37:31 nodes. The first order coordi-

nate derivatives were approximated by the central dif-

ferences with the second order accuracy. The time de-

rivative was expressed by the one-sided difference 

with the first order accuracy. The Laplace operator 

was factorized on the base of the three point scheme 

and had the second order accuracy. The values of vor-

ticity on the lateral boundaries were found over the 

formula of Thom and Aplte [10]. The step size of the 

time was calculated in accordance with the necessity 

of the stability of numerical procedure over the formu-

la 

 2 2min , 4x yh h  , 

where hx, hy are the coordinate steps on x and y,  is 

the empirical parameter greater than unit. The Poisson 

equation for the stream function  was solved by the 
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method of simple iterations [10]. Over the numerical 

simulation pseudoviscosity method was used to get the 

snap fields of the temperature T and the stream func-

tion . To analyze the oscillatory regimes maximum 

and minimum values of stream function max and min 

were calculated. 

4.2. Results and discussion 

The numerical calculations with isothermal wide 

boundaries of the Hele–Shaw cell yielded the follow-

ing results. The first over-critical regime with the low-

est value of Ra was found to correspond to the charac-

teristic two vortex flow. This result was independent 

of the value of . For  = 0.2, the relation between the 

flow regime and Ra was investigated in detail.  

At low Rayleigh numbers below Ra = 330, a sta-

tionary equilibrium state flow was observed. As Ra 

was increased, we found a two vortex flow regime 

with left-right symmetry but this flow had no up-down 

symmetry. The isolines of stream function and temper-

ature are shown in Figs. 5, 6 for Ra = 360, Pr = 7, and 

 = 0.5. The displacement of vortices to the upper part 

of the cavity is observed. There is a simple explana-

tion of this effect. 

The bowed equilibrium profile of temperature can 

be replaced approximately by the broken line with two 

straight pieces (dashed lines, Fig. 2). There are two re-

gions in a cavity at the plane of wide boundaries with 

different characteristic values of temperature gradient. 

For small values of super-criticality the higher part of 

temperature distribution with large derivative induces 

convection but the lower part of the broken line may 

correspond to the small temperature gradient which is 

not sufficient to produce convective motion. Therefore 

the stagnant zone has been formed in lower part of the 

Hele–Shaw cell. The space with the slow movement 

can be observed from the fields of stream function and 

temperature (Figs. 5, 6). 

At Ra = 455 and beyond, we found an oscillatory 

four vortex flow with reunification of corner vortices. 

Initially the oscillations in this regime were periodic 

and contained only one frequency at Ra = 455. How-

ever in the range 460 < Ra < 500, the dependence of 

max on time clearly contained more frequencies and a 

Fourier analysis is required to understand these com-

plexities. We also looked at the dependence of max on 

Ra with different values of parameter  for flows over 

the threshold of convection. It can be seen that for all 

values of , max increases with the Rayleigh number.  

The x-intercepts of these graph had to be extrapo-

lated from the graphs as calculating the value of max 

close to zero would have large errors induced by our 

numerical approach for big values of . Furthermore, 

the x-intercepts obtained here are close to the projec-

tions that can be obtained from Fig. 3. The difference 

in the two values obtained is due to the error intro-

duced by the using of only one basis function in Ga-

lerkin’s method. 

If we introduce point perturbation at the initial 

moment of time, the two-vortex steady regime is char-

acterised by the down flow along lateral sides and up-

ward movement along centerline. This flow gives the 

thermal spot in central part of the cavity (Fig. 6).

   (a)    (b) 

Fig. 5. The isolines of stream function for steady two-

vortex flow 

Fig. 6. The isolines of temperature for steady two-

vortex flow 
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The period  of oscillations for different values of 

Rayleigh number 

Ra 455 460 465 470 

 (non-dimensional 

units) 

398 392 360 282 

 (minutes) 14.9 14.7 13.5 10.6 

 

It was emphasized that oscillatory regimes origi-

nate for moderate values of super-criticality. In wide 

range of governing parameter Ra there are different 

variations of the four vortex flow with alternating reu-

nification of corner vortices. Characteristic fields of 

stream function in different moments time are present-

ed in Fig. 7 for Ra = 500. The Fig. 8 demonstrates that 

the oscillations become more non-linear and their am-

plitude increases with the growth of governing param-

eter Ra. At the same time the period of oscillations has 

the tendency to be smaller with the increase of Ray-

leigh number. The numerical values of period can be 

found in the table. For large values of super-criticality 

this reunification of corner vortices becomes non-

periodical. 

5. Conclusion 

Convective flows in a Hele–Shaw cell have been in-

vestigated theoretically when the dependence of ther-

mal diffusivity on temperature is taken into account. It 

has been shown for the cavity with aspect ratio 

2:20:40 that the inclusion of this factor in our model 

leads to the symmetry breakdown of the steady two-

vortex flow for small values of over-criticality. Visual-

ly it looks as the displacement of vortices to upper part 

of the cavity and formation of the stagnation zone near 

the lower boundary. The different oscillatory flows 

originate for bigger values of Rayleigh number. It was 

found that these oscillatory regimes correspond to var-

ious deviations on the well-known four-vortex flow 

with alternating reunification of opposite corner vorti-

ces. 

       

       

Fig. 7.  Oscillatory four-vortex regime with reunification of corner vortices 
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