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В последние десятилетия в математике особую остроту приобрели эпистемологические проблемы, 
связанные со слишком большой длиной доказательства важных математических результатов, а 
также с большим и постоянно возрастающим количеством публикаций по математике. Предпола-
гается, что эти затруднения могут быть разрешены (хотя бы частично) путем обращения к компь-
ютерным доказательствам. Однако и компьютерные доказательства оказываются проблематичны-
ми с эпистемологической точки зрения. И относительно доказательств в обычной (неформальной) 
математике, и относительно компьютерных доказательств в равной степени актуальна проблема 
их обозримости. Исходя из традиционного понимания доказательства оно обязательно должно 
быть обозримым, иначе оно не будет достигать своей основной цели — формирования убежден-
ности в правильности доказываемого математического результата. Около 15 лет назад начал раз-
виваться новый подход к основаниям математики, сочетающий в себе конструктивистские, струк-
туралистские черты и ряд преимуществ классического подхода к математике. Этот подход вы-
страивается на основе гомотопической теории типов и носит название унивалентных оснований 
математики. Благодаря мощному понятию равенства этот подход позволяет значительно сокра-
тить длину формализованных доказательств, что намечает путь к разрешению возникших эписте-
мологических затруднений. 
Ключевые слова: доказательство, понимание, обозримость, основания математики, практика. 

COMPUTER PROOFS PRACTICE AND HUMAN UNDERSTANDING: 
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In recent decades, some epistemological issues have become especially acute in mathematics. These is-
sues are associated with long proofs of various important mathematical results, as well as with a large and 
constantly increasing number of publications in mathematics. It is assumed that (at least partially) these 
difficulties can be resolved by referring to computer proofs. However, computer proofs also turn out to be 
problematic from an epistemological point of view. With regard to both proofs in ordinary (informal) 
mathematics and computer proofs, the problem of their surveyability appears to be fundamental. Based on 
the traditional concept of proof, it must be surveyable, otherwise it will not achieve its main goal — the 
formation of conviction in the correctness of the mathematical result being proved. About 15 years ago, a 
new approach to the foundations of mathematics began to develop, combining constructivist, structuralist 
features and a number of advantages of the classical approach to mathematics. This approach is built on 
the basis of homotopy type theory and is called the univalent foundations of mathematics. Due to its 
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powerful notion of equality, this approach can significantly reduce the length of formalized proofs, which 
outlines a way to resolve the epistemological difficulties that have arisen. 
Keywords: proof, understanding, surveyability, foundations of mathematics, practice.  
 

На протяжении истории математика довольно 
часто воспринималась как дисциплина, претен-
дующая на абсолютное знание. Такое понима-
ние предполагает, что математика «непогреши-
ма», математические результаты не пересмат-
риваются, а общая структура математического 
исследования и математического знания явля-
ются желаемой целью и ориентиром для 
остальных наук. В истории философии и мате-
матики такие идеи можно встретить и у древне-
греческих авторов, и у философов Нового вре-
мени, и у ряда современных исследователей. 
Тем не менее математикой занимаются люди, а 
людям, как утверждает древняя мудрость, свой-
ственно ошибаться. Следовательно, имеется 
определенный запрос на выработку таких мето-
дов математического исследования, которые бы 
соответствовали предполагаемой «непогреши-
мости» математики и гарантировали отсутствие 
ошибок. Кроме того, в настоящее время разви-
тие математического знания дошло до такой 
стадии, когда в некоторых предметных обла-
стях доказательство даже ключевых теорем 
становится настолько большим, что проверка 
этих доказательств серьезно затрудняется. Для 
некоторых исследователей указанные обстоя-
тельства служат основанием для обращения к 
компьютерным доказательствам. 

Настоящая статья посвящена рассмотрению 
некоторых сложившихся практик работы с 
компьютерными доказательствами, а также во-
просам соотношения компьютерных доказа-
тельств с человеческим пониманием. Рассмат-
риваются эпистемологические затруднения, 
возникающие при использовании компьютер-
ных доказательств, а также дается обзор совре-
менных подходов к основаниям математики. 
Предполагается, что новые подходы к основа-
ниям математики позволяют изменить практику 
разработки компьютерных доказательств таким 
образом, что рассматриваемые эпистемологи-
ческие затруднения (частично) разрешаются. В 
статье предлагаются вопросы, обсуждение ко-
торых позволит в дальнейшем определить, яв-
ляются ли предполагаемые решения эпистемо-
логических затруднений достаточными и могут 
ли они косвенно использоваться при сравнении 

различных конкурирующих подходов к основа-
ниям математики. 

Статья разделена на пять частей. В первой 
части указываются причины обращения к ком-
пьютерным доказательствам. Во второй части 
рассматриваются некоторые сложившиеся 
практики разработки и использования компью-
терных доказательств. В третьей части дается 
обзор проекта QED, основной целью которого 
является переход к формализованной и компь-
ютеризированной математике. Четвертая часть 
посвящена проблематике человеческого пони-
мания в связи с компьютерными доказатель-
ствами, что позволяет наметить основные эпи-
стемологические затруднения компьютерных 
доказательств. В пятой части дается обзор со-
временных подходов к основаниям математики, 
которые, как это предполагается, (частично) 
разрешают эпистемологические затруднения. В 
пятой же части ставятся вопросы для дальней-
шего исследования эпистемологии компьютер-
ных доказательств и оснований математики. 

I. Причины обращения 
к компьютерным доказательствам 

Основной (своего рода, насущной) причиной 
обращения к компьютерным доказательствам 
является постоянно увеличивающаяся слож-
ность математического знания. Компьютерные 
доказательства сами по себе представляли и 
представляют собой интересный предмет ис-
следований, однако причина особого внимания 
к ним состоит в надежде на то, что компью-
терные доказательства позволят упростить 
труд работающего математика. Причем необ-
ходимо отметить, что сложность математики 
понимается в данном случае сразу в несколь-
ких аспектах1. 

Первый и наиболее важный аспект сложно-
сти математики заключается в размерах доказа-
тельств. Так, некоторые теоремы имеют 
настолько объемные доказательства, что их 
проверка существенно затруднена. Причем это 
касается в том числе и теорем, которые являют-

________________________________________ 
1 По отдельности эти аспекты отмечаются, например, в 
статье В. А. Шапошникова [Шапошников В.А., 2018]. 



Л.Д. Ламберов 

 7 

ся центральными для некоторых разделов ма-
тематики. Чего стоит, например, препринт до-
казательства теоремы Ф. Олмгрена из геомет-
рической теории измерений, занимающий 1728 
машинопечатных страниц2, или доказательство 
теоремы Робертсона–Сеймура из теории гра-
фов, опубликованной в виде серии из 20 статей 
общим объемом почти 600 страниц3. Таким об-
разом, по меньшей мере некоторые результаты 
насколько велики, что временные затраты на 
проверку доказательств превосходят разумные 
(человеческие) пределы. Поскольку понимание 
доказательства дает понимание причин, почему 
математический результат имеет место, по-
стольку слишком трудоемкое освоение доказа-
тельства не позволяет достичь более глубокого 
понимания самого математического результата. 
В качестве иллюстрации можно привести слу-
чай, описываемый Б. Дэйвисом [Davies B., 2005, 
p. 1353], когда один из его студентов поставил 
под сомнение использование в доказательстве 
одной из теорем обобщенного варианта теоре-
мы Мерсера [Mercer J., 1909]. Дело в том, что 
хотя обобщенный вариант теоремы Мерсера 
использовался многими математиками, он не 
был явно приведен ни в одной публикации4 (со-
ответственно, и не имел опубликованного дока-
зательства). В связи с этим Б. Дэйвис решил 
опубликовать обобщенный вариант теоремы 
Мерсера с доказательством. Хотя, как он сам 
признался, «для меня и для всякого, кто доста-
точно подробно изучил изначальное доказа-
тельство, было очевидно, что классическое 
ограничение интервала не является необходи-
мым, однако потребовалось четыре страницы 
для описания и доказательства достаточно об-
щей формы данного результата» [Davies B., 
2005, p. 1353]. Очевидно, что отсутствие пони-
мания изначального доказательства не позволи-
ло бы использовать обобщенный вариант тео-
ремы в доказательстве многих других матема-

________________________________________ 
2 Автор работал над доказательством теоремы более 10 
лет, с 1970-х до начала 1980-х гг., а до 2000 г. эта работа 
не была опубликована, хотя сама по себе эта теорема се-
годня считается одной из фундаментальнейших 
[Almgren's Big Regularity Paper, 2000]. 
3 Статьи публиковались с 1983 по 2004 г. в журнале 
«Journal of Combinatorial Theory» [Robertson N., Sey-
mour P., 1983, 2004]. 
4 Ср. с концепцией «личностного» знания М. Полани 
[Polanyi M., 1958]. 

тических результатов, которые в этом случае 
просто оказались бы недоступными математи-
ческому сообществу. 

Второй аспект сложности математики связан 
скорее не с внутренними особенностями совре-
менного математического знания, а с социоло-
гическими (или даже демографическими) фак-
торами. Этот аспект касается совокупного объ-
ема публикуемых математических работ. К 
примеру, рейтинг математических журналов 
(область: математика; без предметной катего-
рии, с включением компьютерных наук) 
Scimago Journal and Country Rank за 2019 г. со-
держит 2024 журнала5, а в arXiv, архив элек-
тронных публикаций и препринтов, за 2019 г. 
было добавлено 37 294 статьи по математике6. 
Это весьма и весьма приличный объем, кото-
рый не позволяет отдельно взятому математику 
быть в курсе всех новых результатов (по мень-
шей мере, в математике в целом), не говоря уже 
о внимательном изучении соответствующих 
доказательств. Несомненно, такая ситуация 
приводит к усилению специализации среди ма-
тематиков и дальнейшему дроблению матема-
тической науки на составные части, области ис-
следований, а проверка результатов потенци-
ально затрудняется (например, ввиду недоста-
точного числа квалифицированных специали-
стов и отсутствия у них времени). 

Однако два указанных аспекта, поскольку 
они являются независимыми друг от друга, 
вполне могут совмещаться, и фактически в ма-
тематике такое совмещение уже имеет место. 
Наиболее обсуждаемым примером такого сов-
мещения является теорема о классификации 
простых конечных групп. Доказательство этой 
теоремы занимает десятки тысяч страниц и раз-
деляется на большое количество промежуточ-
ных результатов, опубликованных в нескольких 
сотнях журнальных статей. Само по себе дока-
зательство представляет собой своего рода «мо-
заику», собранную приблизительно сотней раз-
ных авторов. Впервые завершение доказатель-
ства было анонсировано в 1983 г. Д. Горен- 
стейном, однако оно содержало некоторое ко-

________________________________________ 
5 Scimago Journal and Country Rank. 2019. URL: 
https://www.scimagojr.com/journalrank.php?area=2600&yea
r=2019 (accessed: 09.09.2020). 
6 Mathematics. Article statistics for 2019. URL: 
https://arxiv.org/year/math/19 (accessed: 09.09.2020). 
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личество пробелов, небольшие из которых бы-
ли заполнены относительно быстро, однако 
наибольший пробел, заключающийся в класси-
фикации квазитонких групп, был заполнен 
лишь в 2004 г. после завершения совместной 
работы М. Ашбахера [Aschbacher M., 2004] и 
С. Смита (один только этот результат занимает 
1221 страницу). Планировалось систематически 
представлять доказательство теоремы в виде 
многотомного книжного издания, однако пуб-
ликацию планируется завершить лишь к 2023 г. 
при условии, что будут решены все оставшиеся 
проблемы [Solomon R., 2018]. Таким образом, в 
настоящее время полное доказательство не 
только не издано, но оно пока отсутствует в 
принципе, хотя сомнений у большинства мате-
матиков в том, что оно будет рано или поздно 
получено, нет. То есть этот результат получил 
статус теоремы еще до полного построения до-
казательства. Такая «незавершенность» доказа-
тельства объясняется следующей особенно-
стью: нет какого-то серьезного ограничения на 
«открытие» новых простых конечных групп. 
Если новая (не учтенная до этого) простая ко-
нечная группа окажется достаточно «похожей» 
на уже известные и классифицированные, то 
это не должно вызвать серьезных затруднений. 
Однако обнаружение новой простой конечной 
группы, которая будет серьезно отличаться от 
уже известных, вновь приведет к ситуации, ко-
гда доказательство этой теоремы станет неза-
вершенным. Надежды на правильность доказа-
тельства основываются на том, что обнаружен-
ные до сих пор пробелы, заполнялись путем 
выполнения дополнительной математической 
работы. Однако не следует забывать, как выра-
жается Б. Дэйвис, что «цепь настолько крепка, 
насколько слабо ее самое слабое звено, а тот 
факт, что всякое дефектное звено до настояще-
го времени заменялось на правильное, не гаран-
тирует того, что так будет продолжаться и да-
лее» [Davies B., 2005, p. 1354]. Даже если пред-
полагать, что доказательство всегда можно бу-
дет дополнить для учета любой новой простой 
конечной группы, это не делает невозможной 
ситуацию, когда доказательство оказывается 
принципиально незавершаемым. 

Один из авторов доказательства теоремы о 
классификации простых конечных групп 
утверждает, что «польза» этой теоремы осно-
вывается на двух важных фактах [Aschba- 

cher M., 2005, p. 2403–2404]. Во-первых, это 
сводимость конечных групп к простым груп-
пам. Во-вторых, описание групп дополняется 
эффективной репрезентацией. Соответственно, 
из набора объектов со «слабой» структурой и 
высокой сложностью можно получить набор 
объектов с «сильной» структурой и более низ-
кой сложностью (этот переход скрыт в доказа-
тельстве от тех, кто использует теорему), а «пе-
ревод» проблемы, не имеющей классической 
математической структуры (например, из обла-
сти биологии или теории информации), в тео-
рию групп позволяет благодаря обсуждаемой 
теореме достаточно быстро получить решение. 
В этой связи достаточно сложная математика 
становится близкой к таким наукам, в которых 
имеет место переизбыток информации (напри-
мер, в смысле наблюдаемых данных). Другими 
словами, такая математика стремится к связно-
му описанию и последовательному объяснению 
чрезмерно большого количества разнородной 
(возможно, слабо структурированной) инфор-
мации, а соответствующее доказательство зача-
стую оказывается чрезмерно длинным и слож-
ным. Поэтому узкие идеалы классической ма-
тематической строгости и красоты могут быть 
расширены или пересмотрены в пользу идеалов 
приложимости математических результатов. 

Таким образом, в настоящее время мы име-
ем дело со все возрастающей сложностью ма-
тематики, которая выходит за пределы когни-
тивных способностей отдельно взятого челове-
ка. В связи с этим некоторые исследователи 
выражают надежду на (хотя бы частичное) раз-
решение проблемы сложности математики пу-
тем обращения к компьютерным доказатель-
ствам и тотальной формализации. 

II. Компьютерное доказательство: 
история и сложившаяся практика 

Использование людьми вспомогательных вы-
числительных средств имеет довольно давнюю 
историю, однако эти средства применялись в 
основном в приложениях математики, а не в 
доказательствах теорем7 (т.е. не для получения 
нового математического знания). В силу прин-
ципов функционирования вычислительных ма-

________________________________________ 
7 Обзор проблематики компьютерных доказательств см.: 
[Ламберов Л.Д., 2018a, 2019, 2020]. 
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шин (вплоть до настоящего времени) только 
формализованные доказательства могут быть 
представлены в компьютерной форме. Таким 
образом, у истоков компьютерных доказа-
тельств стоят создатели современной матема-
тической логики. Хотя математическая логика, 
метод формализации применительно к матема-
тике и формализованные математические тео-
рии вообще развивались начиная со второй по-
ловины XIX в., возможность создания первых 
компьютерных доказательство появилась лишь 
в 1950-х гг. с созданием первых вычислитель-
ных машин общего назначения (по сути, циф-
ровых компьютеров). 

Одними из первых8 компьютерных доказа-
тельств стали (1) доказательство М. Дэвисом 
[Davis M., 1983a] того, что сумма двух четных 
чисел является четным числом в арифметике 
Пресбургера на компьютере JOHNNIAC в 
1954 г., (2) доказательства 38 теорем исчисле-
ния высказываний из второй главы Principia 
Mathematica Б. Рассела и А. Уайтхэда, выпол-
ненные «Машиной логической теории», про-
граммой, написанной А. Ньюэлом, Дж. Шоу и 
Г. Саймоном [Newel A. et al., 1983] в 1957 г. 

В дальнейшем и приблизительно до 
1970-х гг. в качестве основного метода, исполь-
зуемого в компьютерных доказательствах, вы-
ступал метод резолюций. Например, Л. Вос и 
Л. Геншен описывают ситуацию таким обра-
зом: «Между 1967-м и 1970-м гг. по автомати-
ческому доказательству теорем появилось око-
ло девяноста статей и докладов, из которых бо-
лее шестидесяти в том или ином аспекте каса-
лись [метода] резолюций» [Wos L., Henschen L., 
1983, p. 4]. Исследователям казалось, что бла-
годаря открытию Дж. Робинсоном алгоритма 
синтаксической унификации для метода резо-
люций практически все проблемы автоматиче-
ских доказательств решены. Правда, следует 
отметить одну важную особенность систем 
компьютерных доказательств, выстраиваемых 
на основе этого метода, которая делает компь-
ютерные доказательства проблематичными с 
эпистемологической точки зрения. Дело в том, 
что при использовании метода резолюций вы-
числительная машина работает по принципу 

________________________________________ 
8 Обзор предыстории и ранней истории компьютерных 
доказательств см.: [Davis M., 1983b]. 

своего рода «черного ящика», когда исследова-
тель имеет лишь крайне ограниченные возмож-
ности влияния на построение доказательства и 
вынужден, по сути, лишь ждать завершения ра-
боты программы. Причем ресурсы компьютера 
вполне могут закончиться раньше того момен-
та, когда будет найдено доказательство. 

Одновременно велись работы по разработ-
ке различных семантик языков программиро-
вания, которые позволяли бы использовать 
математические методы для доказательства 
корректности программного обеспечения (т.е. 
соответствия написанного программистом 
кода заданной спецификации). В частности, 
эти исследования привели к созданию около 
1980 г. системы компьютерных доказательств 
LCF [Milner R., 1979], основной особенно-
стью которой стала возможность программи-
рования тактик доказательств на специальном 
языке ML. Кроме того, следует упомянуть се-
рьезный прогресс в формализации доказа-
тельств по индукции и разработке систем пе-
реписывания термов, выразившийся в созда-
нии Р. Бойером и Дж.С. Муром (в создание 
дальнейших улучшений значительный вклад 
внес также М. Кауфман) системы Nqthm 
[Boyer R.S. et al., 1995]. 

Однако наибольшее влияние на современ-
ные подходы к разработке систем компьютер-
ных доказательств оказало развитие теории ти-
пов. Так, в 1968 г. Н. де Брёйн [De Bruijn N., 
1983] создал систему Automath, способную вы-
полнять проверку корректности математиче-
ских доказательств потенциально любой фор-
мы. Добиться этого удалось благодаря исполь-
зованию теории типов и лямбда-исчисления. 
Теория типов была впервые представлена 
Б. Расселом9 в качестве решения проблемы па-
радоксов и использована им совместно с 
А. Уайтхэдом в Principia Mathematica, а лямб-
да-исчисление создано А. Чёрчем [Church A., 
1932, 1940] для исследования понятия вычис-
лимости. Типизированное лямбда-исчисление 
помимо прочего представляет собой вариант 
исчисления высших порядков, т.е. может вы-
ступать в качестве более простой альтернативы 
метаматематике в духе Б. Рассела и 

________________________________________ 
9 «Приложение B: Доктрина типов» см.: [Russell B., 
1903]. 
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А. Уайтхэда. Кроме того, вычисление лямбда-
терма может быть представлено в схожем с 
натуральным выводом виде, что в конечном 
счете позволило обнаружить взаимосвязь меж-
ду (конструктивными) доказательствами, с од-
ной стороны, и лямбда-термами — с другой. 
Указанная взаимосвязь носит название изомор-
физма Карри–Говарда и ставит в соответствие 
высказывания (теоремы) и типы, а также дока-
зательства высказываний (теорем) и термы, об-
ладающие соответствующим типом. 

Расцвет развития теории типов в области 
компьютерных наук приходится на последнюю 
четверть XX в. и настоящее время. В 1970-х гг. 
на основе лямбда-исчисления П. Мартин-Лёф 
[Martin-Löf P., 1984; Ламберов Л.Д., 2017] 
сформулировал интуиционистскую теорию ти-
пов, мощную систему для конструктивной ак-
сиоматизации математических структур. Благо-
даря структурной связи между высказываниями 
и доказательствами, с одной стороны (со сторо-
ны логики), и типами и термами — с другой (со 
стороны типизированных вычислений), теоре-
тико-типовой подход представляет собой вари-
ант интерпретации логических понятий и поз-
воляет анализировать статику и динамику дока-
зательств (например, в соответствии с кон-
структивным подходом). В дальнейшем на ос-
нове интуиционистской теории типов 
П. Мартин-Лёфа были построены различные 
исчисления, которые, в свою очередь, реализо-
ваны в специальных интерактивных средствах 
доказательства теорем (например, исчисление 
построений реализовано в языке Coq). 

Полностью автоматические доказательства 
редко используются для доказательства мате-
матических результатов, в основном они нужны 
для гарантии корректности программного обес-
печения и не предусматривают, что кто-то бу-
дет их читать. Для математических результатов 
намного более актуальными являются доказа-
тельства с помощью интерактивных средств. 
Такие доказательства (или наброски, использу-
емые системой для создания полных доказа-
тельств) прочитываются, по меньшей мере, в 
момент их написания. В области интерактив-
ных средств для построения доказательств сло-
жилось два основных подхода [Wiedijk F., 
2008], определяемых «стилем» работы с доказа-
тельствами по аналогии со «стилями» програм-
мирования: (1) процедурный (Coq, HOL Light, 

Isabelle), (2) декларативный (Isabelle, Mizar). 
При декларативном подходе пользователь запи-
сывает само доказательство при использовании 
специального языка, однако из-за того, что 
приходится прописывать каждый шаг, доказа-
тельство оказывается похожим скорее на ис-
ходный код программы, чем на обычное мате-
матическое доказательство. При процедурном 
подходе пользователь «подсказывает» системе, 
как следует выполнять построение доказатель-
ства при помощи специального языка тактик, 
само же доказательство строится уже не поль-
зователем, а системой. 

Вокруг некоторых программных средств 
сложились довольно обширные сообщества. К 
примеру, у сообщества Coq имеется своя биб-
лиотека формализованных доказательств10, у 
сообщества Mizar — свой журнал формализо-
ванной математики (Formalized Mathematics) и 
обширная библиотека формализованных дока-
зательств11, у сообщества Isabelle также имеется 
собственный журнал формализованной матема-
тики (The Archive of Formal Proofs), который 
одновременно служит и библиотекой формали-
зованных доказательств. Для подачи статей в 
журналы формализованной математики требу-
ется соблюсти специфические для каждой от-
дельной системы правила, однако никакого 
внешнего рецензирования не требуется, по-
скольку всю проверку доказательства осу-
ществляет вычислительная машина, редактору 
же остается лишь проверить взаимное соответ-
ствие названия статьи, аннотации и формули-
ровки основного результата. 

III. Проект QED 

Изложенное вполне согласуется с «Манифе-
стом QED» [The QED Manifesto, 1994], ано-
нимно опубликованным группой исследовате-
лей в 1994 г. Этот манифест12 призывает к то-
тальной формализации и компьютеризации 
математики с целью решения (обсуждавшихся 

________________________________________ 
10 Coq Package Index. URL: https://coq.inria.fr/opam/www/ 
(accessed: 05.10.2020). 
11 Mizar Mathematical Library. URL: 
http://mizar.uwb.edu.pl/library/ (accessed: 05.10.2020). 
12 Подробное рассмотрение манифеста в контексте рас-
пределенной концепции знания и коммуникации в мате-
матическом сообществе см. в уже цитированной статье 
В.А. Шапошникова. 
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ранее в настоящей статье) проблем сложности, 
а также сохранения математической культуры 
и улучшения математического образования13. 
Считается, что одним из основных создателей 
манифеста выступил Р. Бойер, упоминавшийся 
ранее в контексте системы Nqthm. 

Предполагалось, что проект QED должен 
быть построен на «корневой логике», т.е. при 
допущении максимального уровня абстрактно-
сти логического ядра, которое может быть лег-
ко «дополнено» для работы как с классически-
ми, так и с конструктивистскими и другими 
«стилями» доказательств. Система QED должна 
быть международным общественным достоя-
нием, а ее успех должен состоять не в достиже-
нии «недостижимого» совершенства, а в том, 
чтобы позволить исследователям строить дока-
зательства более точным образом. В конце кон-
цов ошибки неизбежны и в математике, но сле-
дует стремиться к их обнаружению и исправле-
нию. Следовательно, основание QED должно 
быть сравнительно небольшим (предлагается 
ограничиться двумя страницами математиче-
ского текста) и оно должно поддерживать воз-
можность независимой реализации программы 
проверки. Однако следует помнить, что нет та-
кого логического метода, который бы гаранти-
ровал, что формула «выражает» в точности то, 
что хочет человек, ее написавший. 

Следует признать, что, несмотря на свое 
бурное развитие, тотально формализованная 
математики так и не вышла за пределы доста-
точно узкого сообщества. Причины [Wiedijk F., 
2007] этого связываются с отсутствием согла-
сия между различными исследователями по во-
просу выбора «корневой логики», а также су-
ществованием слишком большого числа конку-
рирующих систем, сообщества вокруг которых 
не стремятся к унификации и объединению 
усилий. По сути, на 2007 г. существовало три 
больших проекта: Mizar, семейство HOL и Coq. 
Каждый из этих проектов предполагает соб-
ственный подход как к выбору «корневой логи-
ки», так и к выбору «стиля» записи доказа-
тельств. Ожидаемо, что у каждого из этих трех 

________________________________________ 
13 Это предложение вряд ли можно назвать новаторским. 
Например, Дж. Пеано и коллектив французских матема-
тиков, публиковавшихся под псевдонимом Н. Бурбаки, 
предлагали использовать и фактически использовали 
формальные методы в математическом образовании. 

больших проектов имеются как свои «силь-
ные», так и «слабые» стороны, а также более 
предпочтительные области применения. Так, 
анализ более удобным образом формализуется 
с помощью HOL и Coq, для абстрактной алгеб-
ры больше подходят Mizar и Coq, для теории 
категорий — Coq, а для теории множеств — 
Mizar. К сожалению, ни один из указанных 
проектов не решил проблему интеграции работ 
множества людей в единое целое. 

Помимо чисто технических трудностей 
проект перехода к тотально формализованной 
и компьютеризированной математике сталки-
вается с рядом социальных, политических и 
экономических проблем. В частности, форма-
лизованная математики в том виде, в каком 
она практикуется в рамках любого из указан-
ных выше проектов, чрезвычайно сильно от-
личается от привычной неформальной матема-
тики, требует полной экспликации в формаль-
ном виде каждого доказательства. Последнее 
просто не соответствует обычной математиче-
ской практике, предполагающей предъявление 
лишь наброска доказательства для закрепле-
ния результата. Практически любой математи-
ческий результат зависит от множества других 
математических результатов, которые исполь-
зуются в его доказательстве в качестве лемм. 
Таким образом, полная экспликация доказа-
тельства в формальном виде потребует чрез-
мерных усилий при относительной бедности 
библиотек формальной математики (по срав-
нению с общей «библиотекой» неформального 
математического знания). В связи с этим про-
ект QED предлагается [Weiss I., 2016] рефор-
мировать в сторону отказа от тотальной фор-
мализации в пользу ограниченной формализа-
ции, обеспечивающей нормальную коммуни-
кацию математического знания. 

Представляется, однако, что затруднения в 
реализации проекта QED могут быть обуслов-
лены кризисом традиционного подхода к ос-
нованиям математики (поиски «корневой ло-
гики») и разрешение этого кризиса может при-
вести к обновлению всего здания математиче-
ской науки, а также к переопределению места 
логики в основаниях. Некоторые наиболее 
перспективные современные подходы к осно-
ваниям математики будут рассмотрены в по-
следней части настоящей статьи. 
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IV. Человеческое понимание 
компьютерных доказательств 

Эпистемологические затруднения [Цели-
щев В.В., 2006; Целищев В.В., Хлебалин А.В., 
2020; Хлебалин А.В., 2020], связанные с ком-
пьютерными доказательствами и касающиеся 
проблем человеческого понимания, происте-
кают в первую очередь из-за невозможности 
(или крайней затруднительности) их обозреть. 
Традиционное понятие доказательства [Tymo- 
czko T., 1979, p. 59] предполагает, что оно 
(1) является средством достижения убежденно-
сти, (2) является обозримой конструкцией и 
(3) может быть формализовано. Как было видно 
выше, проблема обозримости доказательств ак-
туальна и для математических результатов, по-
лученных «обычными» математиками, однако 
для компьютерных доказательств она еще ост-
рее. В силу того что вычислительные машины 
способны работать только с формализованными 
доказательствами, которые целиком и полно-
стью записаны в явном виде без исключения 
некоторых (даже очевидных) шагов, эти дока-
зательства оказываются чрезвычайно объемны-
ми. Более того, иногда компьютеры использу-
ются для решения сложных в комбинаторном 
отношении задач, составляющих части некото-
рого доказательства. Например, это имело ме-
сто в известном доказательстве теоремы 
[Appel K., Haken W., 1977; Appel K. et al., 1977] 
о четырех красках, а также в недавнем доказа-
тельстве теоремы [Athreya J.S. et al., 2020] о 
существовании на додекаэдре всюду прямого 
замкнутого пути, начинающегося в одной вер-
шине и не проходящего через остальные вер-
шины. Доказательство обеих теорем предпола-
гает конечный (но довольно большой и трудо-
емкий для человека в силу высокой комбина-
торной сложности) перебор различных вариан-
тов. Этот конечный перебор просто находится 
за пределами вычислительных способностей, 
ограниченных продолжительностью человече-
ской жизни. 

Поскольку компьютерные доказательства 
оказываются необозримыми, постольку возни-
кают сомнения в том, насколько обоснованно 
считать их математическими в традиционном 
понимании математики как чистой внеэмпири-
ческой науки. В этой связи Т. Тимошко 
[Tymoczko T., 1979] (последователь фаллиби-

листской философии математики И. Лакатоса) 
предлагает пересмотр статуса математики с со-
ответствующим пересмотром понятий доказа-
тельства и теоремы в духе фаллибилизма и ква-
зиэмпиризма. При таком подходе математика 
не отличается от любой другой эмпирической 
науки, а доказательства (в частности, необо-
зримые компьютерные доказательства) оказы-
ваются разновидностью экспериментов. Иной 
вывод делает (вслед за Л. Витгенштейном) 
С. Шэнкер [Shanker S., 1987], согласно которо-
му доказательства представляют собой грамма-
тические конструкции, определяющие правила 
употребления математических символов. Соот-
ветственно, если правило не может быть «схва-
чено» (а оно не может быть «схвачено» в случае 
отсутствия обозримости), то мы не можем 
научиться употреблять соответствующие мате-
матические символы. Последнее служит свиде-
тельством в пользу того, что у нас отсутствует 
понимание математики в целом либо некоторых 
ее разделов. Тем не менее невозможность обо-
зреть некоторые доказательства может считать-
ся проявлением исключительно человеческой 
ограниченности. При таком подходе, предлага-
емом, например, П. Теллером [Teller P., 1980], 
обозримые доказательства являются частью че-
ловеческой математики, однако можно помыс-
лить других живых существ, когнитивные спо-
собности которых превосходили бы человече-
ские, их математика будет содержать некото-
рые необозримые для людей доказательства. 

Представляется, что в общем случае необо-
зримость математического доказательства (как 
компьютерного, так и «традиционного» не-
формального) представляет собой важную 
эпистемологическую проблему. Без обозримо-
сти убежденность в правильности доказатель-
ства оказывается сходной с убежденностью в 
пророчествах марсианского математика Сай-
мона14, прозрениях Рамануджана15 или ответах 

________________________________________ 
14 Вымышленный математик, который всегда верно отга-
дывает правильные ответы на математические вопросы, 
см.: [Tymoczko T., 1979]. 
15 Математик-гений начала XX в., утверждавший, что 
математические истины ему нашептывает во время мо-
литвы или сна богиня Намагири Тхайяр. По некоторым 
свидетельствам, Рамануджан испытывал определенные 
трудности с построением доказательств, однако впослед-
ствии довольно большая часть его математических «оза-
рений» была строго доказана другими математиками. 
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вычислительного «черного» ящика. Матема-
тик, доверяющий вычислительной машине, не 
имея возможности обозреть все произведенное 
ею доказательство (либо фрагмент доказатель-
ства, как в случае с теоремой о четырех крас-
ках), вынужден верить в надежность ее рабо-
ты, в правильность и обоснованность исполь-
зуемого формализма и корректность его реа-
лизации в вычислительной машине. Такая вера 
может быть обоснована в духе релайабилизма, 
но требует обращения к сложным вариантам 
понятия надежности, учитывающего указан-
ные выше нюансы. Однако, в силу того что 
вычислительная машина является физическим 
устройством, всегда можно допустить суще-
ствование некоторых неучтенных факторов, 
влияющих на корректность ее работы, чего 
вполне достаточно для того, чтобы необозри-
мые доказательства не могли быть классифи-
цированы как чистые априорные доказатель-
ства «традиционной» математики. 

Рассматривая понятие обозримости матема-
тического доказательства, можно вслед за 
O.Б. Бэсслером [Bassler O.B., 2006] выделить 
две важные разновидности обозримости: 
(1) глобальная обозримость, предполагающая 
общее понимание идеи доказательства и его 
структуры, и (2) локальная обозримость, каса-
ющаяся интуитивного постижения применения 
правила при переходе от одного элементарного 
шага доказательства к другому. В целом любое 
известное на настоящий момент математиче-
ское доказательство является глобально обо-
зримым. У слишком длинных доказательств (и, 
в частности, компьютерных доказательств) от-
сутствует локальная обозримость. Другими 
словами, мы понимаем общую идею каждого 
доказательства, понимаем его структуру, но не 
способны проследить и понять каждый пере-
ход от одного элементарного шага к следую-
щему за ним. Связано это с тем, что длинные 
доказательства содержат слишком больше ко-
личество элементарных шагов, чтобы можно 
было проследить каждый переход от одного 
шага к другому, а также (в частности, в случае 
компьютерных доказательств) с большим коли-
чеством правил, используемых для таких пере-
ходов. Если первая причина достаточно оче-
видна (выше упоминались доказательства дли-
ной 1000 и более страниц), то вторую причину 
необходимо проиллюстрировать отдельно. 

Доказательство теоремы о четырех красках 
предполагает выделение неизбежного набора 
конфигураций карты (страна с двумя соседями, 
страна с тремя соседями и т.д.) и доказатель-
ство редуцируемости любого набора к другому 
набору с меньшим числом стран, для раскра-
шивания которого требуется то же число цве-
тов. По сути, компьютерная часть доказатель-
ства представляет собой перебор возможных 
наборов. То есть с помощью вычислительной 
машины формируются неизбежные наборы 
конфигураций, а далее демонстрируется их ре-
дуцируемость. В окончательном варианте дока-
зательства рассматриваются 1482 конфигура-
ции, для построения которых было использова-
но около 500 правил. Принципы построения 
неизбежных конфигураций в общем случае по-
нятны, но обозримость самого процесса их по-
лучения, доверенного машине, вызывает опре-
деленные сомнения, и немалую роль в этом иг-
рает использование столь большого количества 
правил. Использование такого большого коли-
чества правил (трудно представить себе, как 
обычный математик способен «держать» все их 
в голове) может иметь две причины. Во-
первых, могут использоваться допустимые 
[Rybakov V.V., 1997] правила (класс правил, 
относительно которых данное исчисление за-
мкнуто), которые не меняют множества выво-
димых утверждений, но позволяют сокращать 
длину вывода. Другими словами, в принципе 
можно использовать небольшой базовый набор 
правил, чтобы получить те же теоремы, но до-
казательства в этом случае будут длиннее, а 
вычислительной машине потребуется большее 
время на их построение и/или проверку. Есте-
ственно, в каждом конкретном случае вопрос 
обозримости доказательства будет представлять 
собой вопрос выбора между (условно) корот-
ким доказательством и большим набором пра-
вил, с одной стороны, и (условно) длинным до-
казательством и небольшим набором правил — 
с другой. В общем случае критерий разрешения 
этого вопроса так, чтобы доказательство обяза-
тельно оказывалось обозримым, в настоящее 
время отсутствует. Во-вторых, описываемая не-
которой данной формализованной теорией 
предметная область может быть достаточно 
сложной, в связи с чем число примитивных по-
нятий, характеризующих эту предметную об-
ласть, может быть велико. Соответственно, по-
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требуется по меньшей мере по одному правилу 
на каждое такое понятие. Таким образом, если 
отсутствуют технические средства, с помощью 
которых можно было бы для данной предмет-
ной области обеспечить достаточный уровень 
абстракции, то число правил в рамках соответ-
ствующей формализации будет большим. 

Поскольку набор правил и наличие мощных 
средств абстрагирования во много зависит от 
используемой базовой формальной системы, 
постольку представляется, что выбор подхо-
дящего подхода к основаниями математики 
позволит (хотя бы частично) разрешить про-
блему обозримости. В конце предыдущей ча-
сти указывалось, что трудности реализации 
проекта QED во многом связаны с кризисной 
ситуацией в основаниях математики. В этой 
связи целесообразно обратиться к современ-
ным и наиболее перспективным разработкам в 
этой области. 

V. Обзор современного теоретико-типового 
подхода к основаниям математики 

Современные варианты теории типов представ-
ляют собой достаточно выразительные форма-
лизмы, сочетающие в себе мощное понятие ра-
венства и конструктивный подход, позволяю-
щий легко использовать их при построении ин-
терактивных средств для доказательства тео-
рем. В частности, гомотопическая теория типов 
(далее — ГТТ) опирается на аксиому унива-
лентности, предложенную В. Воеводским16. Из-
за этой аксиомы ГТТ в некотором смысле полу-
чает неконструктивный характер, однако дру-
гие варианты теории типов (например, кубиче-
ская теория типов) позволяют вывести эквива-
лентное ее утверждение в качестве теоремы, 
что дает конструктивную интерпретацию акси-
омы унивалентности. Данная аксиома может 
быть прочитана следующим образом: равенство 
двух типов эквивалентно эквиваленции этих 
типов. Необходимо указать, что эквиваленция 
понимается здесь весьма и весьма широко: как 
логическая, категорическая, гомотопическая 
и т.д. Равенство в ГТТ соответствует объекту, 
представляющему собой путь в пространстве 
путей. В отличие от теории типов П. Мартин-
Лёфа в ГТТ высказываниям соответствуют 

________________________________________ 
16 Введение в ГТТ см.: [Homotopy Type Theory…, 2013]. 

лишь типы с не более чем одним термом. Эти 
типы относятся к -1 уровню иерархии типов, 
который может пониматься как уровень «чисто 
логического». Термы, подпадающие под типы 
более высоких уровней, представляют собой 
разные доказательства (или «компоненты» ис-
тинностного значения), от которых можно аб-
страгироваться, сведя любой тип к типу-
высказыванию (сведя его к -1 уровню). В этой 
связи получается, что математика не сводится к 
чистой логике, как это предполагалось сторон-
никами логицизма и неологицизма, однако ло-
гика все же определяет «логическую» структу-
ру математического знания, которая сохраняет-
ся на любом уровне иерархии типов. 

Неоспоримым преимуществом такого под-
хода к основаниям математики является более 
«естественное» (по сравнению с формализаци-
ями с помощью, например, теории множеств) 
представление математических понятий, а так-
же экстенсиональность для высказываний, 
функций и типов. Последняя особенность пред-
ставляет собой более строгий вариант принципа 
тождественности неразличимых Г.В. Лейбница. 
В некотором смысле можно говорить о нераз-
личимости изоморфных объектов. Другими 
словами, в ГТТ и аналогичных формализмах 
можно обращаться с изоморфными объектами 
как с равными. Безусловно, с чисто теоретиче-
ской точки зрения это не совсем верно, однако 
этот принцип довольно широко используется 
математиками на практике. Благодаря тому что 
в теории типов (и это сохраняется в ГТТ и род-
ственных системах) определимыми являются 
только инвариантные свойства математических 
объектов, при формализации математических 
теорий можно легко избавиться от громоздких 
конструкций с классами эквивалентности для 
инвариантов, что значительно сокращает длину 
доказательств. 

ГТТ как подход к основаниям математики 
предполагает возрождение интереса к струк-
туралистскому подходу [Ламберов Л.Д., 
2018b; Доманов О.А., 2017] и геометризму 
[Родин А.В., 2014] в духе Г.В. Лейбница. В 
рамках ГТТ логическая форма обладает гео-
метрической природой (типы понимаются как 
топологические пространства, объекты — как 
точки в пространстве, доказательства равен-
ства объектов — как доказательство существо-
вания пути из одной точки в другую и т.д.). 
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Геометризм17 оснований математики вкупе с 
выразительностью ГТТ как формальной тео-
рии способствуют большей «прозрачности» 
доказательств. Соответственно, помимо ло-
кальной и глобальной обозримости обосно-
ванно выделить «мезоскопическую» [Rodin A., 
2019; Родин А.В., 2014] обозримость. Таким 
образом, ГТТ и родственные системы при их 
сравнении с традиционной «чистой» логикой и 
теорией множеств представляют собой более 
мощный инструмент для анализа доказа-
тельств и позволяют получать более близкие к 
традиционным математическим рассуждениям 
и обычной математической интуиции [Цели-
щев В.В., 2007] компьютерные доказательства. 
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