Проблемы минералогии, петрографии и металлогении. Научные чтения памяти П.Н. Чирвинского: сборник научных статей. ПГНИУ. Пермь, 2025. Вып. 28

УДК 552.111

И.И. Чайковский¹, В.А. Корякин², Е.П. Чиркова¹ ¹Горный институт УрО РАН, г. Пермь ²Пермский государственный национальный исследовательский университет, г. Пермь

О МЕХАНИЗМАХ ДИФФЕРЕНЦИАЦИИ ПЕТРОГЕННЫХ И РУДНЫХ ЭЛЕМЕНТОВ В ПОЛОСЧАТО-ВКРАПЛЕННЫХ РУДАХ РУДНИКА «СКАЛИСТЫЙ» ТАЛНАХСКОГО РУДНОГО УЗЛА

Охарактеризованы полосчато-вкрапленные руды, для которых показано проявление силикатно-оксидного (оливин, шпинель, плагиоклаз) фракционирования, силикатно-сульфидной и халькопирит-пирротиновой несмесимости. Установлено накопление в сульфидном расплаве не только флюидов (Cl, P, H₂O, O₂), но и петрогенных компонентов (SiO₂, Al₂O₃, TiO₂, FeO, MgO, CaO, K₂O) которые вызывают во вмещающих породах окисление железа, появление гидроксилсодержащих минералов и проявление различных типов метасоматических реакций, мобилизацию и пространственное перераспределение благородных металлов и халькофильных элементов.

Ключевые слова: Талнахская интрузия, вкрапленные руды, магматические и постмагматические процессы

DOI: 10.17072/chirvinsky.2025.167

Для выявления процессов дифференциации, проявившихся в силикатных и сульфидных расплавах, были исследованы вкрапленные руды рудника «Скалистый» с глубины около 1600 м. Талнахский интрузив является типичным представителем рудоносных массивов норильского типа, который дифференцирован от пикритовых габбро-долеритов в подошве до габбро-диоритов в кровле (ссылка). Вкрапленные руды приурочены к нижней части рудоносной интрузии (пикритовые и такситовые габбро-долериты). Исследование химического и минерального состава проводилось на сканирующем электронном микроскопе VEGA 3 LMH с системой рентгеновского энергодисперсионного микроанализа Oxford Instruments INCA Energy 250/X-max 20 (Tescan, Чехия).

В отличие от типичных «капельников» сульфидные обособления не только расслоены на пирротиновую (нижнюю) и халькопиритовую (верхнюю) части иногда пространственно разобщенные, но и вытянуты согласно неясной полосчатости габброидов, особенно крупные (рис. 1). В кровле мелких округлых и крупных вытянутых сульфидных агрегатов присутствует оторочка мелкозернистой породы шириной до 2 см,

[©] Чайковский И.И., Корякин В.А., Чиркова Е.П., 2025

Рис. 1. Общий вид и детали строения оруденелых габброидов: а –полосчато-вкрапленные сульфидные обособления расслоившиеся на пирротиновые (pt) и халькопиритовые (hp) агрегаты и вкрапленность крупных кристаллов пироксена (px); б – взаимоотношение троктолита (hb-1), сульфидных обособлений и ореола мелкозернистой метасоматической породы (hb-2) над ними; в – детали строения троктолита; г- сферолиты серпентина (sp) на контакте халькопирита и метасоматической породы

образование которой Э.М. Спиридонов [4] связывает с воздействием на основную породу флюида, отделившегося от сульфидного расплава.

Основная масса габброида сложена среднезернистыми неясными темными и светлыми полосами, позволяющими отнести породу к троктолиту (рис. 2). Первые представлены зернами трещиноватого субизометричного оливина и шпинелью со сглаженными очертаниями, вторые – битовнитом. Кроме того отмечены отдельные зерна энстатита и его реакционные каймы с магнетитом на оливине, актинолит (с магнетитом) по оливину, изометричные зерна ильменита с фрагментами магнетитовой каймы, мелкие каплевидные агрегаты сульфидов (пирротина, халькопирита, петландита). Ксеноморфный хлорапатит отмечается

Рис. 2. Детали строения троктолита: а – неясно полосчатое строение, обусловленное неравномерным распределением оливина (ol), шпинели (sp) и битовнита (bi); б – раекционная кайма ортопироксена (орх) и магнетита (mt) на оливине; в – коррозионные отношения ортопироксена и пентландита (pnd); г –актинолит (act) и магнетит по оливину; д – магнетитовая кайма на ильмените (ilm)

в виде отдельных зерен, но чаще тяготеет к сульфидным обособления (пирротиновым и халькопиритовым).

Мелкозернистые каймы над сульфидными обособлениями содержат наряду с реликтовыми минералами троктолитов (оливин, шпинель, ильменит) собственные: анортит, халькопирит, флогопит и серпентин (табл. 1, рис. 3). Оливина становится существенно меньше (за счет замещения актинолитом, серпентином и флогопитом), а доля реликтовой шпинели увеличивается. Здесь же отмечен магнетит с вростками бадделеита. Мелкозернистые породы по сравнению с исходными обеднены кремнием, кальцием и натрием (табл. 2, рис. 4)

Таблица 1

	Реальная формула				
Минерал	Среднезернистая основная масса	Мелкозернистая оторочка			
Оливин	Fo ₇₂	F0 _{70.73}			
Плагиоклаз	An ₇₁	An ₉₁			
Энстатит	$(Fe_{0,32-0,49}Ca_{0,02}Mg_{1,50-1,62}$				
	Na _{0.02-0.09})Si _{1.91-2.07} O ₆	-			
Ильменит	$(Fe_{0.88-0.99}Mg_{0.06-0.18}Mn_{0.02-0.04})$	_			
	(Ti _{0,92} V _{0,01})O ₃				
Шпинель	$(Mg_{0,67}Fe_{0,15})(Al_{1,85}Fe_{0,31})O_4$	$(Mg_{0,65}Fe_{0,17})(Al_{1,82}Fe_{0,34})O_4$			
Актинолит	$(Ca_{1,41}Na_{0,41})(Mg_{3,63}Fe_{1,37}) (Al_{1,-})$	+			
	$_{21}$ Si _{6,83} O _{22,6} (Cl _{0.08} OH _{1,92})				
Хлорапатит	$Ca_{4,85-4,96}(P_{2,93-3,11}O_{12})$	_			
	(Cl _{0.95-0.96})				
Фтороцатит	$Ca_{4,89-5,34}(P_{3,12}O_{11,54-11,99}) (Cl_{0,12-})$	_			
+ Topulariti	$_{0.39}F_{0.50-0.60}OH_{0.38}$)				
Пирротин	Fe _{0.90-0.98} S _{1.01-1,1}	-			
Пентландит	$(Fe_{436}Ni_{427})S_{837}$	-			
Халькопирит		Cu _{0,91-0,96} Fe _{0,99-1,03} S _{2,01-2,10}			
Серпентин		$(Mg_{2,71-2,86}Fe_{0,08-0,14})$			
	-	$(\mathrm{Si}_{1,96\text{-}2,01}\mathrm{Al}_{0,03\text{-}0,07}\mathrm{O}_{4,87\text{-}5,18})$			
		(Cl _{0,02-0,08} OH _{3,92-3,98})			
Флогопит		(K _{0,63-0,87} Na _{0,11-0,16})			
	-	$(Mg_{2,38-2,86}Ti_{0,04}Fe_{0,56-0,76})$			
		$(\mathrm{Si}_{2,87\text{-}3,54}\mathrm{Al}_{1,31\text{-}1,63}\mathrm{O}_{16})$			
		$(Cl_{0,12}OH_{1,88})$			

Сопоставление кристаллохимических формул минералов в первичной породе и измененных оторочках

Рис. 3. Детали строения метасоматической породы: а – псевдоморфозы серпентина (sp) и флогопита (fl) по оливину; б – магнетит (mt) с вкрапленностью бадделеита (bd); в – майчнерит (ma) в флогопите вблизи пентландита (pnd)

Таблица 2

Результаты валового анализа крупнозернистого троктолита (кз) и мелкозернистой метасоматической породы (мз), мас. %

	КЗ	М3
0	43,57	44,93
Si	20,70	15,62
Ti	0,23	0,23
Al	9,25	14,09
Fe	9,14	8,85
Mg	6,59	7,26
Mn	0,16	0,13
Ca	6,48	5,40
Na	1,61	0,75
Κ	0,88	1,37
S	0,62	0,50
Cl	0,57	0,65
Cu	0.19	0.32

Рис. 4. Поведение элементов в процессе метасоматоза базитов на контакте с сульфидными обособлениями

В крупных сульфидных обособлениях отмечены укрупненные зерна плагиоклаза замещенного по перефирии хлоритом, а также поздние секущие прожилки флогопита (рис. 5). На границе с мелкозернистой породой отмечены сферолиты серпентина враставшие в сульфидную массу. По периферии мелких изометричных сульфидных «капель» нередко отмечаются кристаллы ильменита, вростки апатита (рис. 6).

Рис. 5. Минералы приуроченные обособлениям сульфидов; а– крупное выделение халькопирита (hp) с вростками флогопита (fl) и анортита (an); б– сросток флогопита и халькопирита; в, г – реакционная хлоритовая кайма (pд) на вростке анортита (an) в сульфидной массе и приуроченные к ней включения электрума (Au,Ag), рустенбургита (Pd,Pt,Sn) и мончеита (Te,Pt,Bi); д – хлорапатит (ap) на контакте с пирротином (pt); е – сферолит серпентина (sp) врастающий в скопление халькопирита

Рис. 6. Мелкие каплевидные сульфидные обособления (а, б) и их минералы: пирротин (pt), халькопирит (hp), пентландит (pnd), хлор-апатит (ap) и ильменит (ilm)

Во вкрапленных рудах зафиксировано большое число микровключений (0,2-2 мк) интерметаллидов, теллуридов, сульфидов и оксохлоридов, большинство из которых локализовано в пределах пирротина, халькопирита и пентландита или вблизи них (табл. 3).

Таблица 3

Минерал-	Реальная формула		Вмещающий минерал*				
включение			2	3	4	5	
Паоловит	Pd _{1.33-1.34} Sn _{0.65-0.67}	+					
Рустенбургит	$(Pt_{0.25-0.26}Pd_{2.41-2.44})Sn_{1.30-1.34}$	+					
?	$Pb_{1,03-1,26}Ag_{1,07-1,40}Se_{0,94-1,14}Te_{0,52-0,63}$	+					
Pd-Мончеит	$Pd_{0.92}Pt_{0.04-0.19}(Te_{0.84-0.85}Bi_{0.78-0.79}As_{0-0.26})$	+			+		
Майчнерит	$Pd_{1.01-1.03}Bi_{0.95}Te_{1.02-1.04}$	+	+				
Гессит	Ag _{1.92-2.07} Te _{0.93-1.08}	+	+	+			
Котульскит	$Pd_{1.02-1.13}(Te_{0.36-0.70}Bi_{0.48-0.61}Sn_{0-0.14})$		+				
Галенит	PbS		+				
Бисмуклит	Bi _{0.99} Cl _{1.02} O _{0.99}		+				
Мончеит	$Pt_{0.92-1.04}(Te_{1.56-1.61}Bi_{0.43-0.76})$		+	+			
Сопчеит	$Ag_{3,02-3,33}Pd_{3,35-3,54}Te_{4,30-4,43}$			+			
Соболевскит	$Pd_{0.94-0.96}Bi_{0.82-0.83}Te_{0.03-0.15}Sb_{0.06-0.07}$			+			
Электрум	Au _{0.51-0.60} Ag _{0.40-0.49}			+		+	

Реальные формулы микроминералов и их пространственная локализация

* 1-пирротин, 2-халькопирит 3- пентландит, 4-флогопит, 5-энстатит

Общие текстурные особенности руд, реальные кристаллохимические формулы минералов и их пространственные взаимоотношения позволяют показать проявление следующих процессов.

1. Наличие шпинели в описываемых рудах говорит о пересыщении глиноземом, вероятно связанным с фракционной природой самих троктолитов.

2. Вытянутость крупных сульфидных обособлений вдоль неясной полосчатости и их расслоение на пирротиновую и халькопиритовую части, иногда пространственно разобщенные, говорит о преобладании на руднике «Скалистом» латерального течения расплава и проявлении силикатно-сульфидной и пирротин-халькопиритовой жидкостной несмесимости уже во время течения. О постепенном затвердевании расплава во время течения может говорить трещиноватость части зерен оливина.

3. Замещение оливина ортопироксеном и магнетитом в троктолите идущее с уменьшением желизистости (f_{ol} -28, f_{opx} -21), свидетельствует о проявившемся после кристаллизации основной силикатной массы окислении и может быть описано формулой:

 $3Fe_2SiO_4 + 3Mg_2SiO_4 + O_2 \rightarrow 2Fe_3O_4 + 3Mg_2Si_2O_6$, [5]. 4. Замещение оливина (f-28) актинолитом (f-27) подтверждается незначительным количеством образовавшегося магнетита и отражает привнос флюида с кальцием, алюминием, хлором и гидроксил-ионом.

5. Коррозионные взаимоотношения пироксена и пентландита в троктолите отражает сульфидизацию (замещение) образовавшихся железистых силикатов.

6. Тяготение хлор-апатита к сульфидным обособлениям в троктолите отражает растворимость фосфата кальция в пирротиновом и халькопиритовом расплаве и его отделение при остывании.

7. Замещение оливина флогопитом (f-20) и серпентином (f-4) в мелкозернистой породе в кровле сульфидных обособлений и субизометричных «капель» отражает поступление из сульфидного расплава воды, калия и алюминия. Исчезновение первично-магматического битовнита и образование вторичного анортита может говорить о происходящем при хлоридно-калиево-глиноземистом метасоматозе выносе натрия. Сопоставление валовых составов первичной среднезернистой породы и вторичной мелкозернистой оторочки, говорит о том, что при при замещении выносятся еще и кремний с кальцием.

8. Реакционное замещение плагиоклаза железистым хлоритом в центре крупного сульфидного обособления свидетельствует о «сбросе» оксидного железа из сульфидного расплава в силикатную фазу. Рост сферолитов серпентина во внутрь сульфидного расплава, говорит о том, что из сульфидного флюида выносились также кремний, магний, хлор и вода. Об отделении из сульфидного расплава еще и калия с кремния свидетельствует рассечение сульфидных обособлений более поздним флогопитом. Вероятно, с фракционированием оксидных железа и титана, может быть связано образование ильменита по периферии изометричных сульфидных «капель».

9. Пространственная локализация микроминералов показывает, что для различных сульфидов (и силикатов) характерен свой набор минералов, однако только золото в составе электрума тяготеет к пентландиту. Минералы остальных элементов (Ag, Pd, Pt, Pb, Sn, Bi, Te, Se) не проявили определенной геохимической связи с пирротином, халькопиритом или пентландитом, что может говорить об их кристаллизации не из расплава на магматической стадии, а из флюидов на некотором расстоянии от исходного субстрата.

Описываемые вкрапленные руды свидетельствуют о сложной истории их формирования и проявлении разнообразных процессов силикатно-оксидного (оливин, шпинель, плагиоклаз) фракционирования, силикатно-сульфидной и халькопирит-пирротиной несмесимости, накопления в сульфидном расплаве не только флюидов (хлор, фосфор, вода, кислород?), но и петрогенных компонентов (SiO₂, Al₂O₃, TiO₂, FeO, MgO, CaO, K₂O) которые вызывают окисление, гидролиз и различные типы метасоматических реакций, мобилизацию и пространственное перераспределение малых элементов (Ag, Pd, Pt, Pb, Sn, Bi, Te, Se).

Процессы окисления, проявленные в оливин-содержащих магматитах объясняются реакцией диссоциации воды, которая может проникать в магматический комплекс в эпоху растяжения и высокотемпературной гидратации [1, 2]. Однако диссоциация воды ведет не к окислению, а образованию гидроксил-содержащих силикатов (серпентинов, амфиболов, хлоритов и др.) и H⁺, который приводит к образованию самородных минералов (аваруит, медь, золото и др.), что было показано М.И. Новгородовой [3]. Представляется, что наличие обильной магнетитовой вкрапленности в массивных сульфидных рудах, описываемой как результат взаимодействия сульфидного расплава с силикатными породами [4], может являться результатом перехода кислорода растворенного в сульфидном расплаве в свободную форму. Кроме кислорода в нем присутствуют и оксиды, из которых кристаллизуются, дорастают (и замещаются) плагиоклазы и флогопит. Магнетит в самих габброидах, вероятно, формируется неоднократно за счет формирования вторичных минералов с убывающей железистостью (f_{act} -27, f_{opx} -21, f_{flog} -20, f_{serp} -4). Наличие относительно низкокремнистых мелкозернистых фло-

Наличие относительно низкокремнистых мелкозернистых флогопит-анортитовых шапок над сульфидными обособлениями отражает проявление специфического метасоматоза габброидов – калиевого, обескремнивающего. Библиографический список

1. *Ефимов* А.А. Платиноносный поясУрала: тектоно-метаморфическая история древней глубинной зоны, записанная в ее фрагментах //Отечественная геология. 1999. № 3, с. 31-39

2. Ефимов А.А., Малич К.Н. Магнетит-ортопироксеновые симплекситы в уральских оливиновых габбро: структурный след реакций окисления в связи с процессом водного метаморфизма. Ежегодник ИГиГ УрО РАН, Екатеринбург, 2007. с. 159-164

3. *Новгородова М.И.* Самородные металлы в гидротермальных рудах. М.: Наука, 1983. 288 с.

4. Спиридонов Э.М. Гриценко Ю.Д. Эпигенетический низкоградный метаморфизм и Co-Ni-Sb-As минерализация в Норильском рудном поле. –М.: Научный мир, 2009. 218 с.

5. *Muir I.D., Tilley C.E.* Contribution to the petrology of Hawaiian basalts, I. The picritic basalt of Kiauea //Am. J. Sci. 1957. V. 255.p. 241-253.

ON THE MECHANISM OF DIFFERENTIATION OF PETROGENIC AND ORE ELEMENTS IN BANDED-DISSEMINATED ORES OF THE SKALISTIY MINE OF THE TALNAKH ORE CLUSTER I.I. Chaikovskiy, V.A. Koryakin, E.P. Chirkova ilya@mi-perm.ru

The banded-disseminated ores are characterized, for which the manifestation of silicate-oxide (olivine, spinel, plagioclase) fractionation, silicate-sulfide and chalcopyrite-pyrrhotite immiscibility is shown. It has been established that the sulfide melt accumulates not only fluids (Cl, P, H₂O), but also petrogenic components (SiO₂, Al₂O₃, TiO₂, FeO, MgO, CaO, K₂O), which cause iron oxidation, the appearance of hydroxyl-containing minerals and various types of metasomatic reactions, mobilization and spatial redistribution of noble metals and chalcophile elements.

Keywords: Talnakh intrusion, disseminated ores, magmatic and postmagmatic processes