ВЕСТНИК ПЕРМСКОГО УНИВЕРСИТЕТА

Том 7 Химия Вып. 3

УДК 541.123

DOI: 10.17072/2223-1838-2017-3-337-342

В.Л. Чечулин

Пермский государственный национальный исследовательский университет, Пермь, Россия

ОБ ОДНОМ ПРИМЕРЕ ПРЕИМУЩЕСТВЕННО ФИЗИЧЕСКОГО ВЗАИМОДЕЙСТВИЯ КОМПОНЕНТОВ В МНОГОКРАТНО НАСЫЩЕННЫХ ВОДНЫХ РАСТВОРАХ

На примере 3-компонентной водно-солевой системы с добавлением физических параметров

плотности, вязкости, проводимости, показателя преломления и рН растворов к данным о со-

ставах на линиях моновариантного равновесия прослежено сохранение свойства плоскостно-

сти линий моновариантного равновесия, указывающее на преимущественно физический ха-

рактер взаимодействия компонентов в этих насыщенных растворах.

Ключевые слова: линии моновариантного равновесия; физические параметры насыщенных раство-

ров; плоскостность линий моновариантного равновесия; физическое взаимодействие компонентов

V.L. Chechulin

Perm State University, Perm, Russia

ABOUT ONE EXAMPLE OF MAINLY PHYSICAL INTERACTION OF COMPONENTS

IN REPEATEDLY SATURATED WATER SOLUTIONS

On the example of 3-component water-salt system with addition of physical parameters of density, vis-

cosity, conductivity, index of refraction and pH of solutions to data on structures on lines of monovar-

iant balance, the maintaining property of planeness of lines of monovariant balance indicating mainly

physical nature of interaction of components in these saturated solutions is tracked.

Keywords: lines of monovariant balance; physical parameters of saturated solutions; planeness of lines of

monovariant balance; physical interaction of components

© Чечулин В.Л., 2017

337

В 2010 г. было открыто коллигативное свойство плоскостности линий моновариантного равновесия в многокомпонентных водносолевых системах [2-4]. Затем, на основании этого свойства, было сделано заключение, что если добавление к данным о растворимости на линиях моновариантного равновесия данных о физических параметрах этих составов не нарушает плоскостности набора данных, то это означает, что в многократно насыщенных растворах (линиях моновариантного равновесия) наблюдается преимущественно физическое (а не химическое) взаимодействие растворенных частиц и растворителя [1], [5]. В работах [1], [5] указанное свойство преимущественно физического взаимодействия частиц в многократно насыщенных растворах наблюдалось при добавлении к данных о растворимости одного физического параметра (показателя преломления или плотности раствора). Был найден пример водно-солевой системы $Li_2SO_4 - Li_2B_4O_7 - H_2O$, в котором, кроме данных о растворимости, имеются данные для 5 физических параметров: плотности, вязкости, проводимости, показателе преломления и рН [7, с. 80], см. таблицу.

Для определения меры неплоскостности наборов данных данные обрабатывались методом главных компонент (см. подробнее [4]). Мера неплокостности для самой трехкомпонентной системы Li₂SO₄ – Li₂B₄O₇ – H₂O по определению равна нулю, так как все данные о растворимости этой системы располагаются в плоскости (барицентрические координаты) — тем легче, при добавлении к данным о растворимости на линиях моновариантного равновесия данных о физических параметрах растворов, отслеживать изменение меры неплоскостности.

Результаты при добавлении к данным о растворимости данных об одном из физических параметров приведены в нижней строке таблицы — эти результаты показывают незначительное изменение свойства плоскостности при добавлении физических параметров.

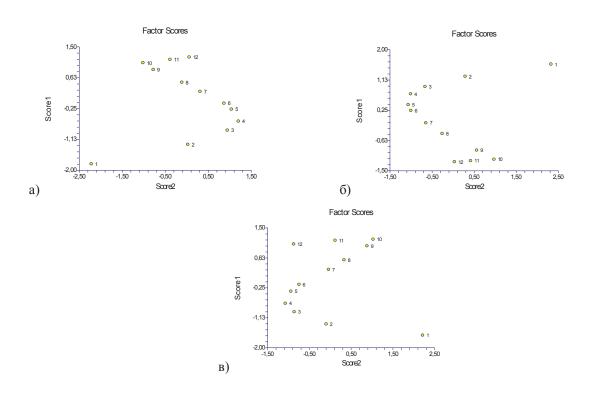
При добавлении к данным о растворимости данных о всех пяти физических параметрах дает неплоскостность данных в 2,18 %, — незначительное изменение (при этом неплоскостность набора данных собственно физических параметров — 1,52 %).

Всего возможна 31 различная комбинация параметров, но для них мера неплоскостности не превышает величину в 2,18 %.

Данные о растворимости и физических параметрах в системе Li₂SO₄ – Li₂B₄O₇ – H₂O при 25°C [7, с. 80]

B cherence English at English and English										
№	Li ₂ SO ₄	Li ₂ B ₄ O ₇	H ₂ O	плотн.	вязк. сП	проводимость, Ом ⁻¹ см ⁻¹	пок. преломл.	рН		
	1	2	3	4	5	6	7	8		
1	2,88	0	97,12	1,0229	1,038	0,0135	1,3391	9,226		
2	1,86	2,19	95,95	1,0321	1,094	0,0293	1,3408	9,265		
3	1,31	4,76	93,93	1,0495	1,204	0,0438	1,3440	9,124		
4	1,05	6,83	92,12	1,0658	1,333	0,0547	1,3471	9,027		
5	0,84	10,26	88,90	1,0942	1,601	0,0644	1,3523	8,882		
6	0,76	12,10	87,14	1,1099	1,778	0,0676	1,3558	8,790		
7	0,66	16,02	83,32	1,1447	2,269	0,0631**	1,3627	8,529		
8	0,58	19,06	80,36	1,1738	2,829	0,0728	1,3662	8,386		

\sim	_
	mann11111111111111111111111111111111111
Окончание	тиолиио


No	Li ₂ SO ₄	Li ₂ B ₄ O ₇	H_2O	плотн.	вязк. сП	проводимость, Ом ⁻¹ см ⁻¹	пок. преломл.	рН
9	0,49	23,37	76,14	1,2151	3,983	0,0721	1,3738	8,226
10*	0,41	25,53	74,06	1,2334	4,704	0,0683	1,3767	8,158
11	0,17	25,56	74,27	1,2326	4,639	0,0696	1,3764	8,316
12	0	25,58	74,42	1,2311	4,615	0,0592	1,3759	8,585
неплоскостн. при добавл. одного физпараметра, %				0	0,53	1,62	0,01	1,35

^{*} эвтоника, ** так дано в справочнике (вероятна опечатка, см. далее текст)

По таблице видно, что наибольший вклад в неплоскостность данных вносит показатель проводимости раствора. Для сравнения того, какой из физических параметров вносит наибольшее искажение в исходную картину плоскостности данных, воспользовались представлением данных в плоскости первых двух главных компонент. На рис. 1,а представлена исходная картина данных о растворимости в исследуемой системе: точка № 10 — эвтоника, от нее отходят линии моновариантного равновесия.

На рис. 1, б, 1,в представлены картины данных при добавлении физических параметров, кроме показателя проводимости: видно, что геометрически картина не искажается: точка № 10 — эвтоника, от нее отходят линии моновариантного равновесия.

На рис 1,г представлена картина данных при добавлении показателя проводимости: видно что геометрически картина искажается: точка № 10 — эвтоника смещена, нет четких ветвей линий моновариантного равновесия,— это же искажение в усиленной форме сохраняется и для всего набора данных, см. рис. 1,д.

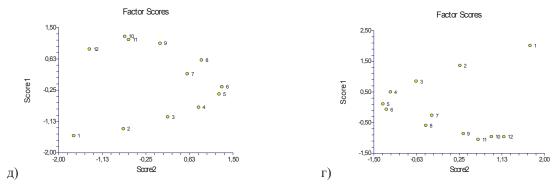
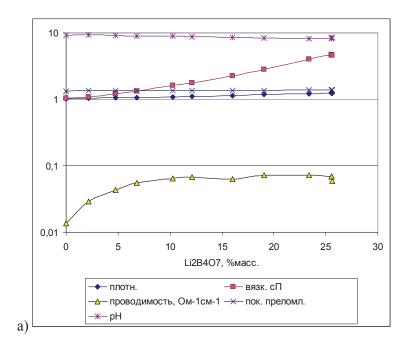



Рис. 1. Топологическая картина данных в плоскости первых двух главных компонент: а) без добавления физпараметров (столбцы 1–3 таблицы) (неплоскостн.=0 %), б) с добавлением параметров плотности и вязкости (столбцы 1–5 таблицы) (неплоскостн.=0,49 %), в) с добавлением параметров показателя преломления и рН (столбцы 1–3 и 7–8 таблицы) (неплоскостн.=1,25 %), г) с добавлением параметров проводимости (столбцы 1–3 и 6 таблицы) (неплоскостн.=1,62 %), д) с добавлением всех пяти параметров (столбцы 1–8 таблицы) (неплоскостн.=2,18 %)

Для выяснения того, что послужило причиной указанного искажения картины данных добавления параметра проводимости, была построена зависимость физпараметров от состава раствора (см. рис. 2,а) — на нем видно, что только для показателя преломления видна

нелинейная зависимость (точка № 7, см. таблицу), см. увеличенно на рис. 2,б. Наличие такой нелинейности позволяет предполагать опечатку в данных, аналогично обнаружению искажений данных при использовании свойства плоскостности, см. [6].

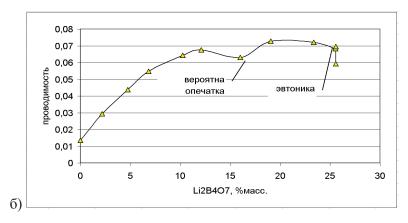


Рис. 2. Зависимость параметров от состава раствора: а) все пять физпараметров, б) проводимость от состава раствора, увеличенно

Таким образом, приведен пример, показывающий наличие преимущественно физического взаимодействия растворенных частиц в многократно насыщенных растворах, указано на применение свойства плоскостности для проверки корректности исходных данных.

Библиографический список

- Мазунин С.А., Чечулин В.Л. О плоскостности составов нонвариантных и моновариантных растворов, их показателя преломления в многокомпонентных водно-солевых системах // Известия высших учебных заведений: Химия и химическая технология. 2015, Т. 58, №. 3, С. 42–44.
- Чечулин В.Л., Мазунин С.А. О плоскостности координат точек моно- и нон-вариантных равновесий в 4-х и более компонентных водно-солевых системах // Известия высших учебных заведений: Химия и химическая технология 2010, Т. 53, №. 3. С. 152–154.
- Чечулин В.Л., Мазунин С.А. О плоскостности моно- и нонвариантных равновесий как коллигативном свойстве многократно насыщенных водных растворов // Журнал общей химии, 2012, Т. 82, № 2, С. 202–204.

- 4. Чечулин В.Л., Мазунин С.А., Моисеенков М.С. Плоскостность линий моновариантного равновесия в водно-солевых системах и её приложение / Перм. гос. нац. исслед. ун-т. Пермь, 2012. 116 с.
- Уечулин В.Л., Мазунин С.А., Заколодкина О.А. О плоскостности линий моновариантных равновесий с учетом параметра плотности раствора // Вестник Пермского университета. Серия: Химия. 2014. № 2, С. 106–111.
- 6. *Чечулин В.Л., Пантелеева Е.А.* Пример приложения свойства плоскостности линий моновариантного равновесия водносолевых систем к анализу достоверности исходных данных // Современные достижения химических наук: материалы Всерос. юбилейн. конф. с междунар. участием, посвящ. 100-летию Перм. ун-та (г. Пермь, 19—21 окт. 2016 г.) / Перм. гос. нац. исслед. ун-т. Пермь, 2016. С. 229—232.
- 7. Экспериментальные данные по растворимости многокомпонентных водно-солевых систем: справочник. в 2-х т. 3-е изд, перераб. и доп. СПб.: ХИМИЗДАТ, 2003. Т. 1., кн. 1. 608 с.

Об авторе

Чечулин Виктор Львович, старший преподаватель, кафедра неорганической химии, химической технологии и техносферной безопасности ФГБОУ ВО «Пермский государственный национальный исследовательский университет» Россия, 614990, г. Пермь, ул. Букирева, 15 chechulinvl@mail.ru

About the author

Chechulin Victor Lvovich, senior teacher, department of inorganic chemistry, chemical technology and technosphere safety Perm State University Russia, 614990, Perm, Bukireva st., 15 chechulinvl@mail.ru

Информация для цитирования

Чечулин В.Л. Об одном примере преимущественно физического взаимодействия компонентов в многократно насыщенных водных растворах // Вестник Пермского университета. Серия «Химия». 2017. Т. 7. Вып. 3. С. 337–342. DOI: 10.17072/2223-1838-2017-3-337-342

Chechulin V.L. *Ob odnom primere preimushchestvenno fizicheskogo vzaimodeistviia komponentov v mnogokratno nasyshchennykh vodnykh rastvorakh* [About one example of mainly physical interaction of components in repeatedly saturated water solutions] // Vestnik Permskogo universiteta. Seriya «Khimiya» = Bulletin of Perm University. Chemistry. 2017. Vol. 7. Issue 3. P. 337–342. (In Russ.). DOI: 10.17072/2223-1838-2017-3-337-342