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Аннотация. Изучено катодное поведение силицидов марганца (MnSi и Mn5Si3) в растворах 0,5 моль/л H2SO4 

+ (0–0,05) моль/л NaF. Рассчитаны степень влияния концентрации фторид-ионов на плотность катодного тока и 
величину дифференциальной емкости силицидов марганца. Сделан вывод, что в присутствии фторид-ионов в 
растворе наблюдается активация катодного выделения водорода, вызванная частичным растворением оксидной 
пленки (близкой по составу к SiO2), которая формируется на поверхности силицидов при потенциале коррозии. 
По сравнению с бесфторидным электролитом наклон b в уравнении Тафеля снижается с ~0,17 В до ~0,09 В.. 
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Abstract. The cathodic behavior of manganese silicides (MnSi and Mn5Si3) in 0,5 mol/l H2SO4 + (0–0,05) mol/l 

NaF solutions was studied. The degree of influence of fluoride ion concentration on the cathodic current density and the 
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Реакция выделения водорода (РВВ) является 

одной из самых изучаемых электрохимических 

реакций [1–6]. Интерес к исследованию этой 

реакции обусловлен ее теоретической и прак-

тической значимостью. РВВ представляет со-

бой относительно простую электрокаталитиче-

скую модельную систему с единственным про-

межуточным продуктом в виде адсорбирован-

ного атомарного водорода. На основе результа-

тов исследования и обобщения этой реакции 

построен теоретический аппарат электрохими-

ческой кинетики и электрокатализа. Обнаруже-

ние новых закономерностей РВВ способствует 

дальнейшему развитию основ теоретической и 

прикладной электрохимии, коррозиологии. Из 

практических направлений применения этой 

реакции можно отметить электролитическое 

получение водорода для целей водородной 

энергетики и синтеза ряда химических продук-

тов. Важно также учитывать негативное прояв-

ление РВВ в процессах коррозии металлов и их 

наводороживания, в гидроэлектрометаллургии 

и гальванотехнике и др.  

Большое количество работ посвящено поис-

ку новых материалов, позволяющих получать 

водород с минимальными энергетическими за-

тратами. Эти материалы помимо высокой элек-

трокаталитической активности в РВВ должны 

обладать механической и коррозионной стой-

костью, устойчивостью к действию каталити-

ческих ядов, стабильностью и низкой стоимо-

стью [6]. В связи с тем, что электрохимическая 

активность материалов определяется не только 

составом и структурой, а также состоянием их 

поверхности,  проводятся исследования влия-

ния различных видов модификации поверхно-

сти материалов на их активность в РВВ. Среди 

предпочтительных видов обработки отмечают-

ся химическое травление в растворах HF, KOH, 

электрохимическое травление, травление в без-

водных средах, расплавах и др. 

Силициды переходных металлов зарекомен-

довали себя как материалы, обладающие высо-

кой коррозионной стойкостью и доступно-

стью [7]. Ранее были проведены исследования 

реакции выделения водорода на поверхности 

силицидов марганца в сернокислом электроли-

те. Было показано, что РВВ характеризуется 

высоким перенапряжением, наклон в уравне-

нии Тафеля b составлял 163–180 мВ [8, 9]. Со-

гласно [8, 9], причиной подобных закономерно-

стей является оксидная пленка, формирующая-

ся на поверхности силицидов при потенциале 

коррозии и состоящая преимущественно из ди-

оксида кремния. На основе измерений диффе-

ренциальной емкости и ее изменения с потен-

циалом и кислотностью электролита показано, 

что эта пленка не восстанавливается при не-

больших катодных поляризациях. 

Целью данной работы являлось изучение ка-

тодного поведения силицидов марганца (MnSi 

и Mn5Si3) в сернокислой фторид-содержащей 

среде, где влияние диоксида кремния ослабле-

но. 

Объекты и методы исследования 

Материалами для исследования служили два 

монокристаллических образца силицида мар-

ганца, MnSi и Mn5Si3. Образцы были получены 

методом Чохральского в печи для промышлен-

ного выращивания монокристаллов ОКБ-8093 

(«Редмет-8»). Измерения производились в рас-

творах 0,5 моль/л H2SO4 + (0–0,05) моль/л NaF. 

Фторид натрия вводился в электролит непо-

средственно перед экспериментом. Методика 

эксперимента подробно описана в работах 

[8, 9]. Потенциалы в работе приведены относи-
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тельно стандартного водородного электрода, 

плотности тока i даны в расчете на единицу 

геометрической поверхности электрода. 

Результаты и их обсуждение 

На катодных потенциостатических кривых 

силицидов MnSi и Mn5Si3 при потенциалах от -

0,46 до –0,70 В регистрируется линейный уча-

сток (рис. 1).  

Значения наклонов линейных участков, 

определенных в тафелевских координатах, 

представлены в табл. 1. Как следует из табл. 1, 

с ростом концентрации фторид-ионов происхо-

дит снижение тафелевского наклона. Более ак-

тивное снижение наблюдается для моносили-

цида марганца. Результаты, полученные для 

электролита, содержащего 0,05 М NaF, указы-

вают на наличие нескольких линейных участ-

ков: при Е < -0,58 В наблюдается увеличение 

наклона до ~ 0,20–0,23 B. Постоянная a в урав-

нении Тафеля в исследованных растворах при-

нимает значения 0,70–1,36 В и 0,77–1,37 В для 

MnSi и Mn5Si3 соответственно. 

По сравнению с раствором чистой серной 

кислоты во фторидсодержащем электролите 

РВВ протекает с меньшими значениями пере-

напряжения. По-видимому, оксидная пленка, 

отвечающая за высокую коррозионную стой-

кость силицидов в кислых средах, подвергается 

частичному растворению в присутствии HF (в 

кислых средах фторид-ионы существуют в рас-

творе преимущественно в виде HF [10]). 
Таблица 1.  

Значения b в уравнении Тафеля для MnSi и Mn5Si3  

в растворах 0,5 моль/л H2SO4 + x моль/л NaF 

cNaF, M 0 0,0025 0,005 0,05 

MnSi 0,164 0,124 B 0,096 B 0,087 B 
Mn5Si3 0,167 0,120 B 0,103 B 0,099 B 

 

 
(а) 

 
 (б) 

Рис. 1. Катодные потенциостатические кривые 

 MnSi (а) и Mn5Si3 (б) в растворах  

0,5 моль/л H2SO4 + x моль/л NaF,  

где х: 1 – 0,05; 2 – 0,005; 3 – 0,0025; 4 – 0 

 

Добавление самой маленькой концентрации 

фторида натрия (0,0025 моль/л) приводит к 

смещению потенциала коррозии в катодную 

область и увеличению катодной плотности тока 

по сравнению с бесфторидным электролитом. 

Дальнейшее повышение концентрации фторид-

ионов (до 0,05 моль/л) приводит к выделению 

водорода уже при потенциале коррозии. Авто-

ры [11] отмечают, что кремний в области по-

тенциала коррозии и небольших анодных поля-

ризаций растворяется в разбавленных раство-
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рах HF (< 1 моль/л HF) согласно электрохими-

ческим и химическим превращениям: 

Si + 2H2O → Si(ОН)2 + 2Н+ + 2е− 

Si(OH)2 + 2H2O → Si(OH)4 + H2 

Si(OH)2 + 2HF → Si(OH)2F2 + H2 

Изменение состава и морфологии поверх-

ностного слоя силицидов может существенно 

влиять на кинетические параметры РВВ. В ра-

ботах [12, 13] описывается процесс выделения 

водорода на предварительно анодированной 

поверхности силицидов кобальта (Co2Si и 

CoSi2). Отмечается заметное снижение плотно-

сти катодного тока на анодированном электро-

де по сравнению с неанодированным образцом. 

В работе [14] показано, что введение фторид-

ионов приводит к увеличению значений катод-

ных токов на дисилициде железа, что объясня-

ется увеличением вклада металла в кинетику 

электродных процессов. 

 
Рис. 2. Зависимость nNaF в растворах  

0,5 моль/л H2SO4 + (0,0025–0,05) моль/л NaF  

от потенциала электродов. 

 

Степень влияния концентрации фторид-

ионов на плотность катодного тока представле-

на на рис. 2, где nNaF = dlgi/dlgcNaF – изменение 

плотности тока при увеличении концентрации 

фторида натрия. Несмотря на то, что фторид-

ионы не принимают прямого участия в реакции 

выделения водорода, их присутствие приводит 

к росту катодного тока за счет химического и 

электрохимического взаимодействия с поверх-

ностью электрода. Более выраженный эффект 

наблюдается для моносилицида марганца, ко-

торый содержит большее количество кремния в 

своем составе. Подобные закономерности мо-

гут указывать на усложнение строения меж-

фазной границы в присутствии фторид-ионов. 

На изменение состояния поверхности сили-

цидов в присутствии NaF указывает изменение 

значений дифференциальной емкости C и хода 

C,E-кривой при повышении cNaF (рис. 3). По-

степенное увеличение концентрации NaF при-

водит к росту значений емкости. В растворе, 

содержащем 0,05 моль/л NaF, значения C, рав-

ные ~10–30 мкФ/см2, близки к значениям, ха-

рактерным для металлических поверхностей 

[15]. Поверхность моносилицида марганца ока-

зывается более чувствительна к присутствию в 

растворе фторид-ионов: значения дифференци-

альной емкости начинают увеличиваться уже 

при добавлении 0,0025 моль/л NaF, в то время 

как для Mn5Si3 добавление 0,005 моль/л NaF 

вызывает слабый рост емкости. Учитывая, что 

диоксид кремния не является устойчивым во 

фторидсодержащих средах и при потенциале 

коррозии наблюдается выделение водорода в 

результате взаимодействия кислородсодержа-

щих соединений кремния с компонентами 

электролита, можно предположить, что увели-

чение плотности катодного тока на силицидах 

марганца связано с изменением состава элек-

тродной поверхности и формированием более 

развитого рельефа. Влияние марганца в данных 

условиях, по-видимому, понижено, так как 

марганец не образует устойчивых соединений 

при потенциале коррозии в кислой среде [16]. 
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а 

 
б 

Рис. 3. Зависимость дифференциальной емкости 

MnSi (а) и Mn5Si3 (б)-электрода при частоте  

10 кГц от потенциала в растворах  

0,5 моль/л H2SO4 + х моль/л NaF,  

где х: 1 – 0,05; 2 – 0,005; 3 – 0,0025; 4 – 0. 

 

Графики на комплексной Z-плоскости пред-

ставляют собой емкостные полуокружности, 

близкие по виду к графикам, полученным в 

сернокислом бесфторидном электролите [8, 9]. 

На рис. 4. представлены спектры импеданса 

MnSi-электрода во фторидсодержащем раство-

ре. По сравнению с бесфторидным электроли-

том существенно снижается величина модуля 

импеданса |Z|: для MnSi-электрода при Е = -0,52 

В максимальное значение |Z| в бесфторидном 

электролите ~4000 Ом∙см2, а для раствора, со-

держащего 0,05 моль/л NaF, максимальное зна-

чение |Z| равно ~15 Ом∙см2. В растворах с высо-

ким содержанием фторид-ионов (0,05 М NaF) 

дополнительно к емкостной полуокружности 

регистрируется индуктивная дуга в области 

низких частот. 

 
а 

 
б 

Рис. 4. Годографы импеданса для MnSi-электрода 

 в 0,5моль/л H2SO4 + x моль/л NaF, где х:  

(а) – 0,0025; (б) – 0,05; при -Е, В: 

1 – 0,43; 2 – 0,46; 3 – 0,49; 4 – 0,52 
 

Обработка спектров импеданса производи-

лась по эквивалентной схеме, использованной 

ранее для силицидов марганца в бесфторидной 

электролите [8, 9]. В результате были рассчита-

ны следующие параметры: Rs – сопротивление 

электролита; R1 – сопротивление переноса за-

ряда; сопротивление R2 и емкость C2, которые 

описывают адсорбцию атомарного водорода на 

поверхности электрода; параметры Q и p для 

элемента CPE1, который моделирует двойно-

слойную емкость на неоднородной поверхно-

сти твердого электрода. Величина 2 составила 

(4–20)·10-5. 
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Параметры эквивалентной схемы (R1, R2, C2) 

были проанализированы в зависимости от по-

тенциала электрода в полулогарифмических 

координатах. Для MnSi и Mn5Si3 электродов во 

всех фторидсодержащих растворах линейные 

участки регистрируются в интервале –Е = 0,46–

0,61 В, при более высоких потенциалах сопро-

тивление R2 и емкость С2 определяются с боль-

шой погрешностью. Наклон полученных ли-

нейных зависимостей представлен в табл. 2.  
Таблица 2.  

Величины наклонов (∂lgX/∂E)CH+ (X = R1, R2, C2) для MnSi и Mn5Si3-электродов 

 в растворахи 0,5 моль/л H2SO4 + x моль/л NaF 

Раствор 
11 В,lg

H


















c
E

R

 

12 В,lg

H


















c
E

R

 

12 В,
lg

H


















c
E

C

 
MnSi Mn5Si3 MnSi Mn5Si3 MnSi Mn5Si3 

0,5 M H2SO4 3,5 1,5 5,8 5,9 -4,1 0,68 
0,5 M H2SO4 + 0,0025 M NaF 7,8 8,7 6,4 6,1 -2,9 -2,5 
0,5 M H2SO4 + 0,005 M NaF 4,1 5,5 10,5 10,9 -4,7 -7,5 
0,5 M H2SO4 + 0,05 M NaF 3,4 3,6 9,2 9,6 -6,7 -6,0 

 

Можно отметить, что по сравнению с ре-

зультатами, полученными на силицидах мар-

ганца в бесфторидном электролите, значения 

производных (∂lgX/∂E)CH+ во фторидсодержа-

щем электролите слабо зависят от состава элек-

трода. Сходное поведение силицидов марганца 

во фторидсодержащем электролите указывает 

на частичное растворение диоксида кремния и 

на снижение его вклада в кинетику реакции 

выделения водорода.  

Значения наклонов для полулогарифмиче-

ских зависимостей R1, R2, C2 от Е указывают на 

механизм, описанный в бесфторидном электро-

лите: разряд – электрохимическая десорбция, 

при этом лимитирующая стадия, вероятно, 

электрохимическая десорбция; обе стадии не-

обратимы; коэффициенты переноса неравны; 

адсорбция атомарного водорода подчиняется 

изотерме Ленгмюра [17]. 

Заключение 

Активация процесса катодного выделения 

водорода на поверхности силицидов марганца 

(MnSi и Mn5Si3) в растворах 0,5 M H2SO4 + х M 

NaF связана с растворением оксидной пленки, 

образующейся на их поверхности при потенци-

але коррозии. С ростом концентрации фторид-

ионов вклад кремния в кинетику РВВ уменьша-

ется. Более сильное влияние по сравнению с 

бесфторидным электролитом оказывается на 

моносилид марганца MnSi, где содержание 

кремния заметно выше по сравнению с Mn5Si3. 

В результате удается достичь снижения пере-

напряжения выделения водорода на силицидах 

марганца (MnSi и Mn5Si3) в сернокислом элек-

тролите при добавлении в раствор NaF. 
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