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Одним из материалов, используемых для 

производства оптического стекла, является 

кварцевое стекло. Востребованность этого ма-

териала связанна с его высокой механической 

прочностью, широким диапазоном пропуска-

ния в УФ, видимой и ближней ИК областях и 

высокой термостойкостью. Также кварцевое 

стекло устойчиво к действию кислот (кроме 

плавиковой) и воды, что позволяет использо-

вать оптическое стекло из диоксида кремния в 

агрессивных средах: например, для изготовле-

ния окон фотоприемников и колб газоразряд-

ных ламп [1]. Помимо этого, оптические стекла 

используют для производства оптических дета-

лей, оптических приборов, оптико-технических 

устройств и астрономических приборов [2]. 

В качестве сырья для получения кварцевого 

стекла используют природные материалы из 

диоксида кремния (например, из горного хру-

сталя, жильного кварца или кварцевых песков), 

а также синтетический диоксид кремния СДК 

[3]. Способы синтеза диоксида кремния, по 

данным статьи [4], начались в 1870-х годах. В 

конце двадцатого века начали развиваться спо-

собы синтеза формованного материала, кото-

рые в последствии получили название прямого 

алкоксидного золь-гель процесса. Вскоре по-

явились и другие методы получения стеклооб-

разных материалов: коллоидные и модифици-

рованные золь-гель процессы. 

В зависимости от области применения раз-

личают инфракрасный (КИ) и ультрафиолето-

вый кварц (КУ). Технологии их получения так-

же различаются: кварцевые стекла марки КИ 

получают электротермическим и газопламен-

ным способом, а кварцевые стекла марки КУ – 

синтезом из газовой фазы (паросинтетический 

способ) [5]. 

Технологии получения марок кварцевых 

стекол связанны с разными требованиями к оп-

тическому стеклу. В основном, марки отлича-

ются между собой областью показателя пре-

ломления. Однако существуют и общие свой-

ства, отличающие оптические стекла от про-

мышленных.  К таким свойствам относится вы-

сокая однородность и прозрачность. В большей 

степени на физические, физико-химические и 

технологические свойства оптического стекла 

оказывает влияние химический состав. Не ме-

нее важную роль в формировании свойств оп-

тического стекла занимает его термообработка. 

Одними из немногих, но не менее важных 

свойств, на которые влияет термический режим 

являются показатель преломления, плотность и 

прочность [6]. Перечисленные свойства обу-

славливаются особенностями технологического 

процесса, одной из составляющей которого яв-

ляется термическая обработка. Высокотемпера-

турная обработка диоксида кремния была хо-

рошо изучена на примере природного кварца 

[7–9]. Значительная роль отведена фазовым из-

менениям диоксида кремния в процессе его 

термической обработки и плавления, что и бу-

дет подробно рассматриваться в этом литера-

турном обзоре. 

Фазовые переходы диоксида кремния 

Молекула диоксида кремния представляет 

тетраэдр [SiO4]4- с атомом кремния в центре и 

четырьмя атомами кислорода в вершинах [10], 

средний угол Si-O-Si примерно составляет 

109°, а связи Si-O преимущественно носят ко-

валентный характер [9]. Атомы кислорода в 

тетраэдрах называются мостиковыми и, благо-

даря взаимодействию друг с другом под опре-

деленными углами (в зависимости от модифи-

кации кремнезема), образуют трехмерную ре-
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шетку. Величина углов Si-O-Si и расстояния 

между Si-O определяют прочность связей и в 

зависимости от структурной формы диоксида 

кремния у разных модификаций существуют 

свои условия существования [11]. Такие свой-

ства можно отследить по однокомпонентной 

диаграмме К. Феннера, в которой автор собрал 

основные модификации кремнезема, часто 

встречающиеся в природе и технических про-

дуктах [12]. Кроме диаграммы Феннера суще-

ствуют и другие аналоги диаграмм фазового 

состояния кремнезема (рис. 1). Кроме пред-

ставленных на диаграмме модификаций 

кремнезема существуют и другие, описание 

которых можно найти в работах [13–15].Кроме 

различных фазовых состояний, модификации 

диоксида кремния разделяют на низкотемпера-

турные (α-) и высокотемпературные (β-) поли-

морфные структуры. Высокотемпературные 

модификации существуют лишь в ограничен-

ном диапазоне температур и являются метаста-

бильными за их пределами [10].  

 

Рис. 1. Диаграмма фазовых состояний кремнезема 

 

По структурному состоянию диоксид крем-

ния разделяют на три типа [11]: кристалличе-

ское (структурно совершенное), квазикристал-

лическое (разная степень структурного разупо-

рядочения) и наноразмерное (тонкодисперсное, 

скрытокристаллическое). Приведенные струк-

турные формы различаются друг от друга в за-

висимости от кристаллохимии и условий син-

теза. 

Самой распространенной структурой диоксида 

кремния является кварц [16]. До 573°С диоксид 

кремния существует в виде α-кварца (рис. 2) и 

является стабильной фазой, прежде чем перей-

дет в β-кварц [17]. Этот переход протекает 
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быстро и сопровождается небольшим смещени-

ем молекул диоксида кремния относительно 

друг друга. Такой механизм фазового превра-

щения называется смещающей трансформацией 

[18]. 

 

Рис. 2. Структурная перестройка α-кварца в β-кварц. 

 Модели построены при температурах 20 К и 1073 К соответственно [19] 

 

При температуре 870°С β-кварц может пере-

ходить в тридимит, однако этот переход воз-

может при наличии определенных примесей – 

щелочных или щелочноземельных металлов 

[7]. Следовательно, тридимит может образо-

ваться только из природного диоксида кремния 

или при специальном добавлении примесей к 

синтетическому диоксиду кремния, а в чистом 

диоксиде кремния тридимит не образуется [20]. 

Структура тридимита, как и других модифика-

ций диоксида кремния, представляет собой по-

следовательно расположенные слои из тетраэд-

ров [SiO4]4-. Авторы [9] отмечают, что все мо-

дификации тридимита состоят в основном из 

двухслойных участков, в то время как кристо-

балитные модификации преимущественно со-

стоят из трехслойных участков. Кроме этого, 

различают высокотемпературный тридимит и 

низкотемпературный тридимит, которые имеют 

сингонию элементарной ячейки: в первом слу-

чае – ромбическую, а во втором – гексагональ-

ную [11]. Так, в одной из работ [21], в которой 

изучался высокотемпературный тридимит, бы-

ло предложено уравнение (1) превращений че-

тырех фаз тридимита 

KKК

OPOCHP
373433693

  

и приведены их кристаллические структуры 

(табл. 1, рис. 3). 

Таблица 1. 

Кристаллические фазы тридимита 

Кристаллическая 

форма тридимита 
Симметрия 

Пространственная 

группа 

Температура  

образования, °C 

HP (β) Гексагональная  P63/mmc 460 

LHP (β) Гексагональная  Р6322 400 

OC (α) Орторомбическая  С2221 220 

OS Орторомбическая   100–200 

OP Орторомбическая  Р212121 155 

MC Моноклинная  Cc 22 

MX Моноклинная  C1 22 
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Рис. 3. Кристаллические структуры тридимита SiO4: 

а) шестигранный HP; б) орторомбический OC; в) орторомбический OP; г) моноклинный MC [21] 

 

Большой интерес представляет переход β-

кварца в β-кристобалит, т.к. именно кристоба-

литная фаза оказывает влияние на конечные 

свойства кварцевого стекла [22]. Это преобра-

зование происходит около 1470°С и носит ре-

конструктивный характер [17], также его назы-

вают восстановительной трансформацией [23]. 

Для образования β-кристобалита треть связей в 

β-кварце разрушается [17] и под действием 

диффузионных процессов [18] перестраивается 

в кубическую решетку [11]. В работе [24] рас-

сматривают превращение в β-кристобалит че-

рез два возможных энантиоморфных состояния 

(рис. 4).  

 

Рис. 4. Два способа превращения в β-кристобалит [24] 
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Авторы показывают, что кольца в α-

кристобалите, перестраиваются из прямоуголь-

ных форм в шестиугольные при превращении в 

β-кристобалит. Так, при низкотемпературных 

обработках структура перестраивается только в 

одно энантиоморфное состояние, а при высоко-

температурных обработках – могут присут-

ствовать оба варианта симметричных структур.  

Однако, в результате многих исследований, 

было выявлено, что переход β-кварца в β-

кристобалит осуществляется через промежу-

точную аморфную фазу [7, 9, 16–18]. 

Появление переходного состояния между β-

кварцем и β-кристобалитом объясняют тем, что 

при перекристаллизации диоксида кремния 

устойчива только одна кристаллическая струк-

тура, а значит при дальнейшем разрушении 

кварца будет появляться еще более неупорядо-

ченная структура, прежде чем перейти в β-

кристобалит. Такая структура не являться кри-

сталлической, а процесс ее образования будет 

протекать медленно [18]. В источнике [11] 

структуру аморфной промежуточной фазы 

определяют, как открытый трехмерный каркас 

из тетраэдров [SiO4]4- с разупорядоченной 

структурой.  

Также есть исследования о кинетике пре-

вращения β-кварца в β-кристобалит, через про-

межуточное состояние [7, 23, 25]. Авторы при-

шли к выводу, что механизмы превращения β-

кварца в аморфное состояние и аморфного со-

стояния в β-кристобалит различаются. В итоге 

переход β-кварца в аморфную фазу отнесли к 

реакции первого порядка, а переход аморфной 

фазы в β-кристобалит к реакции второго поряд-

ка.  

Также авторами [26] изучались энергии ак-

тивации переходов β-кварца в аморфное состо-

яние и перехода аморфного состояния в β-

кристобалит у разных типов кварцев A, D, G и 

F. Образцы имеют разное геологическое проис-

хождение, внешний вид и содержание приме-

сей, как следствие энергии активации при фа-

зовых переходах четырех типов кварцев также 

различаются между собой (табл. 2).  

Таблица 2  

Химический состав микроэлементов в различных типах кварца  

Тип 

кварца 
Al Fe Ca Mg Na K  ЩМ + ЩЗМ* Ti  Mn  P 

мас. % млн–1 
A 0,0106 0,002 0,0003 0,0009 0,001 0,0023 0,0045 4,2 0,3 <1,1 
D 0,2603 0,2443 0,0033 0,0042 0,0028 0,0626 0,0729 145,8 <0,1 25,6 
F 0,009 0,002 0,001 0,001 0,005 0,004 0,011 4,103 1,184 <1,1 
E 0,0078 0,0024 0,0031 0,0007 0,002 0,0013 0,0071 3,8 0,3 <1,1 

* ЩМ – щелочные металлы, ЩЗМ – щелочноземельные металлы 

 

При переходе β-кварца в аморфное состоя-

ние для четырех типов кварца получили энер-

гии активации в диапазоне от 23,8 кДж/моль до 

64,2 кДж/моль. Тип F показывал отрицательное 

значение энергии активации при переходе в 

аморфное состояние, однако такой результат 

объясняют небольшим количеством образца 

при проведении эксперимента. С увеличением 

количества порошка в эксперименте тип F по-

казал положительное значение энергии актива-

ции перехода β-кварца в аморфное состояние, 

которое составило 5,10 кДж/моль. Энергия ак-

тивации при переходе аморфной фазы в β-

кристобалит наоборот, является для половины 
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типов кварца отрицательной от −198,3 

кДж/моль до 99,0 кДж/моль. Это означает, что 

повышение температуры при плавлении уско-

ряет превращение β-кварца в аморфный диок-

сид кремния и само переходное неупорядочен-

ное состояние будет более стабильным при вы-

соких температурах, чем β-кварц и β-

кристобалит.  

Энергии активации упоминаются и в других 

источниках, однако во всех имеют разные зна-

чения, обусловлено природой исследуемого 

диоксида кремния [7, 22].Общее уравнение ре-

акции перехода β-кварц в β-кристобалит, через 

переходную аморфную фазу можно предста-

вить в следующем виде:  

β-кварц→  

→ промежуточное аморфное состояние → 

→ β-кристобалит. 

Температуры перехода от одной фазе к дру-

гой варьируются в зависимости от природы ди-

оксида кремния и типа кварца [7, 17, 18, 20].  

В одном из источников [20] была предложе-

на теория о том, что переходная аморфная фаза 

может образовываться не только из β-кварца, 

но и из размягченного/расплавленного β-

кристобалита. Такой переход возможен при 

термической обработке 1700°С, 1800°С и 

1900°С, которая включает в себя температуры 

размягчения и плавления диоксида кремния, 

отмечено увеличение процентного содержания 

аморфной фазы и уменьшение кристобалитой 

фазы. 

Механизм образования кристобалита  

в диоксиде кремния и факторы, влияющие 

на кристобалитизацию 

Существует несколько мнений, как именно 

протекает механизм образования кристобалита. 

В более ранних исследованиях образование 

кристобалита связывали с упорядочением 

структуры и предполагали, что упорядочение 

кристалла идет от его центра к периферии [9]. 

В более поздних работах, появляются другие 

теории. Вийк К. [27] предположил, что фазовый 

переход кварца в кристобалит однороден и 

протекает из центров зарождения. В процессе 

плавления образующаяся переходная фаза бу-

дет иметь более низкую плотность чем кварц, 

следовательно, занимать больший объем. В 

итоге это приведет к появлению трещин в ча-

стях порошка, которые все еще являются квар-

цевыми. В результате после разрушения связей 

Si-O произойдет обширная фрагментация пере-

ходной фазы.  

Иное мнение принадлежит авторам статьи 

[8]. Ученые утверждают, что кристобалитная 

фаза образуется на внешней поверхности кри-

сталла и носит гетерогенный характер. Такого 

же мнения придерживаются авторы работы 

[17], в исследовании которых были представле-

ны снимки пропитанного в эпоксидной смоле 

порошка диоксида кремния и отполированные 

до толщины 0,005 мкм (рис. 5), на которых от-

четливо видно, что кристобалит образуется на 

поверхности частиц, а ядро остается аморф-

ным.На данный момент можно утверждать, что 

кристобалитизация у кремнезема начинается на 

поверхности зерен и проникает вглубь при по-

вышении температуры.  

Для определения начала образования кри-

стобалита у синтетического диоксида кремния 

нами были использованы результаты оптиче-

ской микроскопии и сканирующей электронной 

микроскопии. Анализируемый порошок СДК 

получали с помощью золь-гель метода [4] с по-

следующим удалением силанольных групп со-

гласно методике [28]. Порошок СДК обрабаты-
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вался до 1500°С, т.к. при этой температуре 

начинают происходить видимые изменения на 

зернах синтетического диоксида кремния, свя-

занные с фазовыми переходами.  

На поверхности каждого зерна (рис. 6 а) об-

разуется кристобалитная сетка, состоящая из 

отдельных сегментов, схожих по размеру и 

форме. Прозрачность зерен синтетического ди-

оксида кремния (СДК) после термообработки 

говорит о том, что кристобалитизация начина-

лась на поверхности и не прошла до конца. 

Этот вывод сходится с исследованиями о при-

родном диоксиде кремния, в котором кристоба-

литная фаза также образовывалась на поверх-

ности [8, 17].  

На рис. 6 б хорошо различимы ячейки кри-

стобалитной сетки на поверхности зерна и вид-

на переходная аморфная фаза, появившаяся 

после термообработки. Похожие исследования 

проводились также в работе [29], в результате 

которого с помощью СЭМ получили микрофо-

тографии зерен, на поверхности которых 

наблюдали кристобалит, а внутри – аморфную 

фазу. 

 

Рис. 5. Микрофотографии поперечного разрез порошка диоксида кремния из исследования Бренемана Р.К. [17] 

 

К настоящему времени переход диоксида 

кремния в кристобалит исследовался разными 

авторами, и в каждой работе рассматриваются 

свои факторы, влияющие на кристобалитиза-

цию. 

В ранних исследованиях [9] было предложе-

но три температуры, при которой кварц пере-

ходит в кристобалит: 1050°С, 1093°С и 1100°С. 

Однако, сопоставляя эти данные с другими ра-

ботами, авторы статьи пришли к выводу, что 

найденные температуры указывают на три ста-

дии кристобалитизации: образование зароды-

шей кристаллов, быструю кристаллизацию и 

постепенную (медленная) кристаллизацию, со-

ответственно. В работе рассматривали кристал-

лизацию аморфного SiO2, которая начиналась 

при 945°С, а при температуре 1425°С – струк-

тура кристобалита, становилась совершенной и 

указывала на завершение кристобалитизации. 

В работе [30] получали синтетический диок-

сид кремния из диатомита, с помощью химиче-

ской очистки и последующим осаждением из 
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промежуточного раствора. Полученный 

аморфный диоксид кремния показал переход из 

кварца в кристобалит, отличный от основной 

диаграммы К. Феннера. Кристобалитизация в 

исследуемом образце началась при 1100°С. Ав-

торы связывают более низкую температуру 

кристаллизации с примесями Na, оставшимися 

после синтеза. В этой работе за точку, харак-

терную образованию 100% кристобалита, при-

няли температуру 1350°С. 

 

а б 

Рис. 6. Зерна синтетического диоксида кремния с фазой кристобалита: 

а) СДК после термической обработки при 1500°С, х20; б) Снимок СЭМ после термической обработки 

 при 1500°С, х500, 1 – кристобалитная сетка, 2 – аморфная фаза 

 

В более поздней статье [22] при изучении 

фазового перехода кварц-кристобалит, иссле-

довалось влияние размера зерен на образование 

новой фазы. Авторы рассматривали три образ-

ца порошкового кварца, полученного компани-

ей Sibelco, с самым крупным размером зерен – 

28,38 мкм и наименьшим диаметром – 4,135 

мкм. Образцы нагревали до 1300°С и измеряли 

процентное содержание кристобалита. По ре-

зультатам эксперимента порошок с наимень-

шим диаметром частиц начал переходить в 

кристобалитную фазу при 1190°С и к концу 

термической обработки новая фаза составила 

40,6%. Порошок с крупными зернами показал 

другой результат. Кристобалит начал образо-

вываться только при 1250°С и после достиже-

ния температуры в 1300°С кристобалитизация 

составила всего 2,7%.  

Также рассматривалось влияние времени 

термообработки на образование кристобалита. 

Для этого авторы рассматривали три порошка 

диоксида кремния той же компании с разным 

диаметром частиц (4,135 мкм, 15,78 мкм, 28,38 

мкм) (рис. 7). В результате нагрева всех образ-

цов до 1200°С появление кристобалитной фазы 

является незначительным, для всех образцов, 

кроме порошка с наименьшим размером зерен 

(4,135 мкм). Для него содержание образующе-

гося кристобалита увеличивалось в течении 6 

часов. При термической обработке до 1300°С в 

течении первого часа у разных образцов кри-

стобалит образовывался с разной скоростью и в 

разном процентном содержании. Больше всего 

кристобалита наблюдалось у образца с зернами 

4,135 мкм, меньше всего кристобалита наблю-

далось у порошка с диаметром частиц 28,38 
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мкм. После часа обжига, образование кристо-

балита отличалось у образцов не существенно – 

процентный состав кристобалита за последние 

5 часов обжига увеличился у всех образцов 

 на 5%. 

Исходя из представленных выше исследова-

ний, на образование кристобалита могут оказы-

вать влияние следующие факторы: химический 

состав, гранулометрический состав порошка и 

время обжига.  

 

Рис. 7. Количество кристобалита, образующегося при 1300 °C  

при максимальной температуре в разное время [22] 

 

Химический состав за счет большого коли-

чества примесей щелочных и щелочноземель-

ных металлов может ускорять и упрощать об-

разование кристобалита [9], понижая при этом 

температуру кристобалитизации [31]. Так, при-

меси оксида алюминия ускоряют превращение 

кварца в кристобалит в больших количествах 

до определенного предела [7], также есть све-

дения, описывающие получение кварцевого 

стекла с примесями фтора [31], при этом ис-

пользуется температура плавления 1200–

1470°С, что значительно ниже, чем температу-

ра плавления диоксида кремния, предложенная 

в диаграмме фазового состояния Феннера. 

Авторы работы [3] рассматривали влияние 

примесей на кварцевую пенокерамику, т.к. этот 

материал из диоксида кремния обладает боль-

шей кристаллизационной способностью. Так 

особое внимание уделено влиянию оксидов на 

время полной кристаллизации кварцевого пе-

ностекла при 1500°С. В результате исследова-

ний определили, что все трехвалентные катио-

ны замедляют образование кристобалита, че-

тырехвалентные катионы тоже тормозят кри-

стобалитизацию, но не существенно. Однова-

лентные и двухвалентные катионы значительно 

ускоряют процесс кристаллизации, а пятива-

лентные не оказывают достаточного влияния на 

кристаллизацию.  

Поскольку примеси различных соединений 

способны повлиять на процесс кристаллизации, 

а в последствии и на свойства конечного про-
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дукта, синтезируют специальные легированные 

кварцевые стекла. Одними из методов введения 

легирующего соединения является предвари-

тельное легирование (pre-dopingmethod) и по-

следующее легирование (post-dopingmethod). В 

первом случае легирующие добавки вводятся в 

золи или в растворы перед смешиванием, а во 

втором – пропитывают добавками готовое про-

каленное изделие. Такими легирующими до-

бавками часто выступают: Cr, Co, Fe, Ce, Nd, 

Pr, Er, Sm, Eu и др. Введение добавок прежде 

всего влияет на оптические свойства: пропус-

кание, флуоресценцию, люминесценцию и др. 

(рис. 8) [28].  

Значительное влияние на образование кри-

стобалита оказывает гранулометрический со-

став порошка диоксида кремния. Как упомина-

лось выше, авторы статьи [22] описывали в 

своем исследовании влияние размера частиц 

диоксида кремния на образование кристобали-

та. По результатам работы было доказано, что 

меньший диаметр частиц порошка диоксида 

кремния благополучно сказывается на образо-

вании кристобалита. При гранулометрическом 

составе, в котором преобладают зерна меньше-

го размера кристобалитизация протекает при 

меньших температурах и с большим процентом 

кристобалита. Об этом упоминается и в других 

источниках [7, 17, 18,27]. 

Еще один фактов, влияющий на образование 

кристобалита – это режим плавления. Суще-

ственную роль в этом процессе отводят конеч-

ной температуре, температурной выдержке и 

скорости подъема температуры [3]. Высокая 

температура плавления способствует образова-

нию кристобалита [22]. В работе, исследовав-

шей промышленный кремнезем чистотой 99,7% 

с содержанием остаточного кварца 5%, были 

проведены эксперименты по плавлению образ-

цов при разных температурах с разным време-

нем выдержки. В результате выявили законо-

мерность: чем выше конечная температура 

плавления, тем меньше времени требуется для 

образования кристобалита [25]. Например, в 

исследовании [18] пришли к выводам, что по-

вышение конечной температуры плавления на 

100°С приводит к увеличению образующегося 

кристобалита в 6 раз для частиц наименьшего 

размера и в 2–3 раза для частиц крупного раз-

мера. 

 

Рис. 8. Влияние добавок оксидов различной  

валентности на время полной кристаллизации  

образцов кварцевого пеностекла  

при температуре 1500°С 

 

Рассмотренные выше факторы влияют на 

фазовые переходы не только природного, но и 

синтетического диоксида кремния. Однако, в 

связи с тем, что информации о СДК немного, 

влияние химического и гранулометрического 

составов, а также режима обжига можно уста-

новить после проведения специальных иссле-
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дований. Этот вопрос требует детального изу-

чения. 

Однако стоит упомянуть и о превращениях 

диоксида кремния при плавлении. Авторами 

статьи [7] отмечается, что диоксид кремния 

проходит в промышленной печи четыре состо-

яния: твердое (solid), размягчающееся 

(softening), плавящееся (melting) и расплавлен-

ное состояние (moltenstate). При этом выделяют 

несколько фазовых превращений кварца до 

плавления: объемное расширение (volume 

expansion), образование трещин (cracks), раз-

рушение (disintegration), размягчение 

(softening).  

 

 

Рис. 9. Зерна синтетического диоксида кремния после термической обработки: 

а) при 1650°С, х13,5; б) при 1700°С, х20 

 

Перечисленные изменения в структуре 

кварца влияют на площадь контакта химиче-

ских реакций, газопроницаемость печи и ко-

нечный выход продукта. Все эти изменения во 

многих статьях рассматриваются на примере 

природного диоксида кремния, но, к настояще-

му времени, мало изучены у синтетического 

диоксида кремния. В тоже время, как показыва-

ет оптическая микроскопия (рис. 5), у СДК 

наблюдаются похожие этапы при термической 

обработке в печи. 

При 1650°С порошок синтетического диок-

сида кремния начал размягчаться (рис.9 а), то 

есть терять свои «острые» края, кроме этого, 

часть зерна прозрачная, а другая покрыта кри-

стобалитной сеткой, что указывает на фазовый 

переход. Необходимо отметить и отличия от 

природного диоксида кремния. Авторы работы 

[23] определили расплавленные частицы, как 

частицы, имеющие более округлую форму, 

чем размягченные, и теряющие четкие грани-

цы между зернами. Такое расплавленное со-

стояние хорошо прослеживается у природного 

диоксида кремния [20], но трудно различимо у 

синтетического диоксида кремния. На рис. 9 б 

приведен порошок СДК при 1700°С – выбран-

ная температура соответствует точке плавле-

ния природного диоксида кремния [23]. Не-

смотря на то, что плавящееся частицы обычно 

наблюдаются при температуре близкой к тем-

пературе плавления, СДК не отвечает приве-

денному выше определению расплавленных 

частиц.  

Данное наблюдение подтверждает тот факт, 

что СДК переходит в расплавленное состояние 

при более высоких температурах, при этом пе-

реход из размягченного состояния в плавленое 

происходит быстро.  
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Заключение 

Важным фазовым переходом, влияющим на 

конечные свойства, в природном и синтетиче-

ском диоксиде кремния, является образование 

кристобалитной фазы. Как в случае с природ-

ным диоксидом кремния, так и для синтетиче-

ского диоксида кремния на образование этой 

фазы оказывают влияние ряд факторов.  

В обзоре рассмотрены некоторые из них: хи-

мический состав, гранулометрический состав и 

режим обжига. Однако в природном и синтетиче-

ском диоксиде кремния фазовые превращения 

протекают с определенными различиями, учиты-

вая данное обстоятельство рассматривать факто-

ры, влияющие на плавление, в каждом из видов 

диоксида кремния следует индивидуально.  
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