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Научная статья 
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Об одной дискретной задаче оптимального управления 

системой двумерных разностных уравнений типа Вольтерра 

Камил Байрамали оглы Мансимов1, Малахат Яшар кызы Наджафова2 
1Бакинский государственный университет, Баку, Азербайджан 
1,2Институт систем управления Министерства науки и образования Азербайджана 
1kamilbmansimov@gmail.com  
2nacafova.melahat@mail.ru    

Аннотация. Рассматривается задача оптимального управления, дискретным процес-

сом описываемая системой двумерных разностных уравнений типа Вольтерра и функ-

ционалом типа Больца при предположении, что начальная функция является реше-

нием одномерного нелинейного разностного уравнения типа Вольтерра. Области 

управления являются ограниченными и замкнутыми множествами. Используя дис-

кретный аналог игольчатого типа вариаций, вычислено специальное приращение 

функционала качества. Учитывая выражение специального приращение функционала 

качества, доказан дискретный аналог принципа максимума Понтрягина. 

Ключевые слова: разностное уравнение типа Вольтерра; дискретная задача опти-

мального управления; области управления; допустимое управление; формула прира-

щения; необходимое условие оптимальности; дискретный аналог принципа макси-

мума Понтрягина. 
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Введение 

В работах [1, 2] исследованы различные задачи оптимального управления, пред-

ставляющее собой дискретный аналог непрерывной задачи оптимального управления, 

рассмотренной в работе [3]. 

В статье [4] рассмотрена задача оптимального управления системой двумерных раз-

ностных уравнений типа Вольтерра, представляющих собой обобщение задачи опти-

мального управления, из работ [1, 2]. В этой работе получен ряд необходимых условий 

оптимальности при предположении открытости областей управления. 

В предлагаемой работе рассматривается задача оптимального управления, анало-

гичная задаче управления из [4], которая исследуется при предположении ограниченно-

сти и замкнутости областей управления. 

При определенных предположениях на данные задачи управления доказан дискрет-

ный аналог принципа максимума Л. С. Понтрягина [5]. 

Рассматриваемую задачу оптимального управления можно интерпретировать как 

граничную задачу оптимального управления дискретными системами с распределен-

ными параметрами. 
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Отметим, что некоторые задачи оптимального управления дискретными процес-

сами, описываемые обыкновенными разностными уравнениями и разностными уравне-

ниями типа Вольтерра исследованы в работах [6–12]. 

1. Постановка задачи оптимального управления  

Предположим, что управляемый дискретный процесс описывается системой дву-

мерных разностных уравнений типа Вольтерра: 

𝑧(𝑡 + 1, 𝑥) = ∑ 𝑓(𝑡, 𝜏, 𝑥, 𝑧(𝜏, 𝑥), 𝑢(𝜏))

𝑡

𝜏=𝑡0

, 

𝑡 ∈ 𝑇 = {𝑡0, 𝑡0 + 1, . . . , 𝑡1 − 1}, 𝑥 ∈ 𝑋 = {𝑥0, 𝑥0 + 1, . . . , 𝑥1}              (1) 

с начальным условием 

𝑧(𝑡0, 𝑥) = 𝑎(𝑥), 𝑥 ∈ 𝑋,                                                     (2) 

где n-мерная вектор-функция 𝑎(𝑥)  является решением дискретного аналога задачи 

Коши: 

𝑎(𝑥 + 1) = ∑ 𝑔(𝑥, 𝑠, 𝑎(𝑠), 𝑣(𝑠))

𝑥

𝑠=𝑥0

, 𝑥 ∈ 𝑋\𝑥1,                                (3) 

𝑎(𝑥0) = 𝑎0.                                                                  (4) 

Здесь 𝑓(𝑡, 𝜏, 𝑥, 𝑧, 𝑢) (𝑔(𝑥, 𝑠, 𝑎, 𝑣)) − заданная, n-мерная вектор-функция, непрерыв-

ная по совокупности переменных вместе с частными производными по 𝑧(𝑎), 𝑎0 − задан-

ный постоянный вектор, 𝑡0, 𝑥0, 𝑡1, 𝑥1 − заданные натуральные числа, 𝑢(𝑡)(𝑣(𝑥)) − 𝑟(𝑞)-

мерный дискретный вектор управляющих воздействий со значенией из заданного огра-

ниченного и замкнутого множества 𝑈(𝑉), т.е. 

 𝑢(𝑡) ∈ 𝑈 ⊂ 𝑅𝑟 , 𝑡 ∈ 𝑇,                                                       (5) 

𝑣(𝑥) ∈ 𝑉 ⊂ 𝑅𝑞 , 𝑥 ∈ 𝑋\𝑥1. 
Такие управляющие функции назовем допустимыми. 

Экстремальная задача заключается в минимизации функционала типа Больца: 

𝑆(𝑢, 𝑣) = 𝜑(𝑎(𝑥1)) + ∑ 𝐺(𝑧(𝑡1, 𝑥))

𝑥1−1

𝑥=𝑥0

                                     (6) 

при ограничениях (1)–(5). 

Здесь  𝜑(𝑎) и 𝐺(𝑧) − заданные, непрерывно дифференцируемые, скалярные функ-

ции, допустимые управления 𝑢(𝑡) и 𝑣(𝑥) доставляющие минимальное значение функци-

оналу (6) при ограничениях (1)–(5) назовем оптимальным управлением.  

Целью работы является получение необходимых условий оптимальности в рассмат-

риваемой экстремальной задаче.  

2. Формула приращения функционала и оценка норм приращений решений за-

дач типа Коши (1)–(2) и (3)–(4) 

Построим формулу приращения функционала качества. Пусть (𝑢0(𝑡), 𝑣0(𝑥)) − не-

которое допустимое управление. Через (𝑢̄(𝑡) = 𝑢0(𝑡) + 𝛥𝑢(𝑡), 𝑣̄(𝑥) = 𝑣0(𝑥) + 𝛥𝑣(𝑥)) − 

обозначим произвольное допустимое управления.  
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Решения задач (1)–(2) и (3)–(4), отвечающие допустимым управлениям 

(𝑢0(𝑡), 𝑣0(𝑥))  и (𝑢̄(𝑡), 𝑣̄(𝑥))  обозначим соответственно через (𝑧0(𝑡, 𝑥), 𝑎0(𝑥))  и 

(𝑧̅(𝑡, 𝑥), 𝑎̅(𝑥)).  

Из введенных обозначений следует, что приращения, 𝛥𝑧(𝑡, 𝑥) и 𝛥𝑎(𝑥) являются ре-

шениями аналогов задач Коши: 

𝛥𝑧(𝑡 + 1, 𝑥) = ∑ [𝑓(𝑡, 𝜏, 𝑥, 𝑧̅(𝜏, 𝑥), 𝑢̅(𝜏)) − 𝑓(𝑡, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢0(𝜏))]

𝑡

𝜏=𝑡0

,      (7) 

𝛥𝑧(𝑡0, 𝑥) = 𝛥𝑎(𝑥),                                                            (8) 

𝛥𝑎(𝑥 + 1) = ∑ [𝑔(𝑥, 𝑠, 𝑎̅(𝑠), 𝑣̅(𝑠)) − 𝑔(𝑥, 𝑠, 𝑎0(𝑠), 𝑣0(𝑠))]

𝑥

𝑠=𝑥0

,                     (9) 

𝛥𝑎(𝑥0) = 0.                                                                  (10) 

Введем скалярные функции типа Гамильтона–Понтрягина 

𝐻(𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡), 𝜓0(𝑡, 𝑥)) = ∑ 𝜓0′
(𝜏, 𝑥)𝑓(𝜏, 𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡))

𝑡1−1

𝜏=𝑡

, 

𝑀(𝑥, 𝑎(𝑥), 𝑣(𝑥), 𝑝0(𝑥)) = ∑ 𝑝0′
(𝑠)𝑔(𝑠, 𝑥, 𝑎(𝑥), 𝑣(𝑥))

𝑥1−1

𝑠=𝑥

. 

Здесь 𝜓0(𝑡, 𝑥)  и 𝑝0(𝑥)  пока произвольные дискретные и ограниченные вектор-

функции, а штрих – операция транспонирования. 

Из тождеств (7) и (9), используя дискретный аналог теоремы Фубини (см. напри-

мер, работы [13, 14]) доказывается, что 

∑ ∑ 𝜓0′
(𝑡, 𝑥)

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

∆𝑧(𝑡 + 1, 𝑥) = 

= ∑ ∑ [𝐻(𝑡, 𝑥, 𝑧̅(𝑡, 𝑥), 𝑢̅(𝑡), 𝜓0(𝑡, 𝑥)) − 𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

,     (11) 

∑ 𝑝0′
(𝑥)∆𝑎(𝑥 + 1)

𝑥1−1

𝑥=𝑥0

= 

=   ∑ [𝑀(𝑥, 𝑎̅(𝑥), 𝑣̅(𝑥), 𝑝0(𝑥)) − 𝑀(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

.              (12) 

Учитывая тождества (11) и (12), приращение функционала (6) представляется в 

виде: 

𝑆(𝑢̅, 𝑣̅) − 𝑆(𝑢0, 𝑣0) = 𝜑(𝑎̅(𝑥1)) − 𝜑(𝑎0(𝑥1)) + ∑ [𝐺(𝑧̅(𝑡1, 𝑥)) − 𝐺(𝑧0(𝑡1, 𝑥))]

𝑥1−1

𝑥=𝑥0

− 

− ∑ ∑ [𝐻(𝑡, 𝑥, 𝑧̅(𝑡, 𝑥), 𝑢̅(𝑡), 𝜓0(𝑡, 𝑥)) − 𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

− 
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− ∑ [𝑀(𝑥, 𝑎̅(𝑥), 𝑣̅(𝑥), 𝑝0(𝑥)) − 𝑀(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

+ 

+ ∑ ∑ 𝜓0′
(𝑡, 𝑥)

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

∆𝑧(𝑡 + 1, 𝑥) + ∑ 𝑝0′
(𝑥)∆𝑎(𝑥 + 1)

𝑥1−1

𝑥=𝑥0

.                  (13) 

Используя формулу Тейлора и учитывая начальные условия (8) и (10), формула при-

ращения (13) представляется в виде  

𝑆(𝑢̅, 𝑣̅) − 𝑆(𝑢0, 𝑣0) =
𝜕𝜑′(𝑎(𝑥1))

𝜕𝑎
∆𝑎(𝑥1) + 𝑜1(‖𝛥𝑎(𝑥1)‖) + 𝑝0′

(𝑥1)∆𝑎(𝑥1) − 

− ∑ 𝑝0′
(𝑥 − 1)∆𝑎(𝑥)

𝑥1−1

𝑥=𝑥0

− ∑ [𝑀(𝑥, 𝑎0(𝑥), 𝑣̅(𝑥), 𝑝0(𝑥)) − 𝑀(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

− 

− ∑
𝜕𝑀′(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))

𝜕𝑎

𝑥1−1

𝑥=𝑥0

∆𝑎(𝑥) − 

− ∑ [
𝜕𝑀(𝑥, 𝑎0(𝑥), 𝑣̅(𝑥), 𝑝0(𝑥))

𝜕𝑎
−

𝜕𝑀(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))

𝜕𝑎
]

′𝑥1−1

𝑥=𝑥0

∆𝑎(𝑥) − 

− ∑ 𝑜2(‖𝛥𝑎(𝑥)‖)

𝑥1−1

𝑥=𝑥0

+ ∑
𝜕𝐺′(𝑧0(𝑡1, 𝑥))

𝜕𝑧

𝑥1−1

𝑥=𝑥0

𝛥𝑧(𝑡1, 𝑥) + ∑ 𝑜3(‖𝛥𝑧(𝑡1, 𝑥)‖)

𝑥1−1

𝑥=𝑥0

+ 

+ ∑ 𝜓0′
(𝑡1 − 1, 𝑥)∆𝑧(𝑡1, 𝑥)

𝑥1−1

𝑥=𝑥0

− ∑ 𝜓0′
(𝑡0 − 1, 𝑥)∆𝑎(𝑥)

𝑥1−1

𝑥=𝑥0

− 

− ∑ ∑ [𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢̅(𝑡), 𝜓0(𝑡, 𝑥)) − 𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

+ 

+ ∑ ∑ 𝜓0′
(𝑡 − 1, 𝑥)

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

∆𝑧(𝑡, 𝑥) 

− ∑ ∑
𝜕𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))

𝜕𝑧

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

∆𝑧(𝑡, 𝑥) − 

− ∑ ∑ [
𝜕𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢̅(𝑡), 𝜓0(𝑡, 𝑥))

𝜕𝑧

𝑥1−1

𝑥=𝑥0

 𝑡1−1

𝑡=𝑡0

− 

−
𝜕𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))

𝜕𝑧
]

′

∆𝑧(𝑡, 𝑥) − ∑ ∑ 𝑜4(‖𝛥𝑧(𝑡, 𝑥)‖)

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

.                  (14) 

Здесь, и в дальнейшем, ‖𝑦‖ норма вектора 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛)′, определяемая фор-

мулой ‖𝑦‖ = ∑ |𝑦𝑖|
𝑛
𝑖=1 , а 𝑜(𝛼) −величина более высокого порядка, чем 𝛼, т.е. 𝑜(𝛼)/𝛼 → 0, 

при 𝛼 → 0.  

Предположим, что вектор-функции 𝜓0(𝑡, 𝑥), 𝑝0(𝑥) являются решениями линейных 

дискретных задач Коши 
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𝜓0(𝑡 − 1, 𝑥) =
𝜕𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))

𝜕𝑧
, 

𝜓0(𝑡1 − 1, 𝑥) = −
𝜕𝐺(𝑧0(𝑡1, 𝑥))

𝜕𝑧
, 

𝑝0(𝑥 − 1) =
𝜕𝑀(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))

𝜕𝑎
+ 𝜓0(𝑡0 − 1, 𝑥), 

𝑝0(𝑥1 − 1) = −
𝜕𝜑(𝑎(𝑥1))

𝜕𝑎
. 

Тогда формула приращения (14) функционала примет вид 

𝑆(𝑢̅, 𝑣̅) − 𝑆(𝑢0, 𝑣0) = − ∑ [𝑀(𝑥, 𝑎0(𝑥), 𝑣̅(𝑥), 𝑝0(𝑥)) − 𝑀(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

− 

− ∑ ∑ [𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢̅(𝑡), 𝜓0(𝑡, 𝑥)) − 𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

− 

− ∑ [
𝜕𝑀(𝑥, 𝑎0(𝑥), 𝑣̅(𝑥), 𝑝0(𝑥))

𝜕𝑎
−

𝜕𝑀(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))

𝜕𝑎
]

′𝑥1−1

𝑥=𝑥0

∆𝑎(𝑥) − 

− ∑ ∑ [
𝜕𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢̅(𝑡), 𝜓0(𝑡, 𝑥))

𝜕𝑧

𝑥1−1

𝑥=𝑥0

 𝑡1−1

𝑡=𝑡0

− 

−
𝜕𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))

𝜕𝑧
]

′

∆𝑧(𝑡, 𝑥) + 𝑜1(‖𝛥𝑎(𝑥1)‖) − ∑ 𝑜2(‖𝛥𝑎(𝑥1)‖) +

𝑥1−1

𝑥=𝑥0

 

+ ∑ 𝑜3(‖𝛥𝑧(𝑡1, 𝑥)‖)

𝑥1−1

𝑥=𝑥0

− ∑ ∑ 𝑜4(‖𝛥𝑧(𝑡, 𝑥)‖)

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

.                        (15) 

В дальнейшем нам понадобится оценки для ‖𝛥𝑎(𝑥)‖ и ‖𝛥𝑧(𝑡, 𝑥)‖. 

В силу задачи (9)–(10) ясно, что  

𝛥𝑧(𝑡 + 1, 𝑥) = ∑ [∆𝑧(𝜏 + 1, 𝑥) − ∆𝑧(𝜏, 𝑥)]

𝑡

𝜏=𝑡0

+ ∆𝑧(𝑡0, 𝑥). 

Поэтому, используя дискретный аналог леммы Фубини (см. например, [13, 14]), по-

лучаем справедливость тождества: 

𝛥𝑧(𝑡 + 1, 𝑥) = ∑ [∑[𝑓(𝛼, 𝜏, 𝑥, 𝑧̅(𝜏, 𝑥), 𝑢̅(𝜏)) − 𝑓(𝛼, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢0(𝜏))]

𝑡

𝛼=𝜏

− ∆𝑧(𝜏, 𝑥)]

𝑡

𝜏=𝑡0

+ 

+𝛥𝑎(𝑥). 

Из этого тождества, переходя к норме и учитывая непрерывно-дифференцируе-

мость, вектор-функции 𝑓(𝑡, 𝜏, 𝑧, 𝑢), по 𝑧 приходим к неравенству 
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‖𝛥𝑧(𝑡 + 1, 𝑥)‖ ≤ 𝐿1 ∑ ‖∆𝑧(𝜏, 𝑥)‖ + ‖𝛥𝑎(𝑥)‖

𝑡

𝜏=𝑡0

+ 

+ ∑ ∑‖𝑓(𝛼, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢̅(𝜏)) − 𝑓(𝛼, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢0(𝜏))‖

𝑡

𝛼=𝜏

𝑡

𝜏=𝑡0

, 

где 𝐿1 = 𝑐𝑜𝑛𝑠𝑡 > 0 некоторая постоянная. 

Применяя к последнему неравенству дискретный аналог леммы Гронуолла–Белл-

мана (см., например, [15]) получаем, что  

‖𝛥𝑧(𝑡, 𝑥)‖ ≤ 𝐿2[‖𝛥𝑎(𝑥)‖ + 

∑ ∑‖𝑓(𝛼, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢̅(𝜏)) − 𝑓(𝛼, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢0(𝜏))‖

𝑡

𝛼=𝜏

𝑡

𝜏=𝑡0

.         (16) 

Здесь 𝐿2 = 𝑐𝑜𝑛𝑠𝑡 > 0 некоторая постоянная. 

Далее задача (9)–(10) может быть представлено в виде  

𝛥𝑎(𝑥 + 1) = ∑ [∑[𝑔(𝛽, 𝑠, 𝑎̅(𝑠), 𝑣̅(𝑠)) − 𝑔(𝛽, 𝑠, 𝑎0(𝑠), 𝑣0(𝑠))]

𝑥

𝛽=𝑠

− 𝑎(𝑠)]

𝑥

𝑠=𝑥0

. 

Из этого тождества, после некоторых преобразований, применяя дискретный ана-

лог леммы Гронуолла–Беллмана, получаем справедливость оценки: 

‖𝛥𝑎(𝑥)‖ ≤ 𝐿3 ∑ ∑[𝑔(𝛽, 𝑠, 𝑎0(𝑠), 𝑣̅(𝑠)) − 𝑔(𝛽, 𝑠, 𝑎0(𝑠), 𝑣0(𝑠))]

𝑥

𝛽=𝑠

𝑥

𝑠=𝑥0

.           (17) 

Здесь 𝐿3 = 𝑐𝑜𝑛𝑠𝑡 > 0 также  некоторая постоянная. 

3. Необходимые условия оптимальности 

Введем в рассмотрение множества  

𝑓(𝑡, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑈) = {𝑐; 𝑐 = 𝑓(𝑡, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢(𝜏)); 𝑢(𝜏) ∈ 𝑈, 𝜏 ∈ 𝑇},         (18) 

𝑔(𝑥, 𝑠, 𝑎0(𝑠), 𝑉) = {𝑑; 𝑑 = 𝑔(𝑥, 𝑠, 𝑎0(𝑠), 𝑣(𝑠)); 𝑣(𝑠) ∈ 𝑉, 𝑠 ∈ 𝑋\𝑥1}.            (19) 

Предположим, что множества (18) и (19) выпуклы.  

Теперь предположим, что 𝛥𝑣(𝑥) = 0  и специальное приращение допустимого 

управления определим по формуле  

∆𝑢𝜀(𝑡) = 𝑢(𝑡; 𝜀) − 𝑢0( 𝑡), 𝑡 ∈ 𝑇.                                                (20) 

Здесь 𝜀 ∈ [0, 1] − произвольное число, а 𝑢(𝑡; 𝜀) произвольное допустимое управле-

ние, такое, что 

𝑓(𝑡, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢0(𝜏) + ∆𝑢𝜀(𝜏)) − 𝑓(𝑡, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢0(𝜏)) ≡ 

≡ 𝜀𝑓(𝑡, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢(𝜏)) − 𝑓(𝑡, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢0(𝜏)), 

где 𝑢(𝑡) − произвольное допустимое управление, соответствующее управлению 𝑢(𝑡; 𝜀). 
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 Через ∆𝑧𝜀(𝑡, 𝑥) обозначим специальное приращение решения 𝑧0(𝑡, 𝑥). 

Учитывая оценку (16) из формулы приращения (15) функционала, получаем, что 

𝑆(𝑢0 + ∆𝑢, 𝑣0) − 𝑆(𝑢0, 𝑣0) = 

= −𝜀 ∑ ∑ [𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢(𝑡), 𝜓0(𝑡, 𝑥)) − 𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

+ 

+𝑜(𝜀).                                                                      (21) 

Далее предполагая, что ∆𝑢(𝑡) = 0 , специальное приращение управления 𝑣0(𝑥) 

определим по формуле 

∆𝑣𝜇(𝑥) = 𝑣(𝑥; 𝜇) − 𝑣0( 𝑥).                                                (22) 

Здесь 𝜇 ∈ [0, 1] − произвольное число, а 𝑣(𝑥; 𝜇) произвольное допустимое управ-

ление, такое, что  

𝑔(𝑥, 𝑠, 𝑎0(𝑠), 𝑣(𝑠; 𝜇)) − 𝑔(𝑥, 𝑠, 𝑎0(𝑠), 𝑣0(𝑠)) = 

= −𝜇 (𝑔(𝑥, 𝑠, 𝑎0(𝑠), 𝑣(𝑠)) − 𝑔(𝑥, 𝑠, 𝑎0(𝑠), 𝑣0(𝑠))). 

Здесь 𝑣(𝑥) произвольное допустимое управление, соответствующее допустимому 

управлению 𝑣(𝑥; 𝜇). 

Через ∆𝑧(𝑡, 𝑥; 𝜇)  и ∆𝑎(𝑥; 𝜇)  обозначим специальные приращения решения 𝑧0(𝑡, 𝑥) 

и 𝑎0(𝑥), соответствующие специальному приращению (22) управления 𝑣0( 𝑥). 

Из установленных оценок (16) и (17) при этом следует, что ‖𝛥𝑧(𝑡, 𝑥; 𝜇)‖  и 

‖𝛥𝑎(𝑥; 𝜇)‖ имеют порядок малости 𝜇. Поэтому из формулы приращения (15) следует, что  

𝑆(𝑢0(𝑥), 𝑣0(𝑥) + ∆𝑣(𝑥; 𝜇)) − 𝑆(𝑢0(𝑥), 𝑣0(𝑥)) = 

= −𝜇 ∑ [𝑀(𝑥, 𝑎0(𝑥), 𝑣(𝑥), 𝑝0(𝑥)) − 𝑀(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

+ 𝑜(𝜇).      (23) 

Из разложений (21) и (23) следует необходимое условие оптимальности. 

Теорема 1. Если множества (18) и (19) выпуклы, то для оптимальности допустимых 

управлений 𝑢0(𝑡) и 𝑣0(𝑥) необходимо, чтобы неравенства 

∑ ∑ [𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢(𝑡), 𝜓0(𝑡, 𝑥)) − 𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

≤ 0,    (24) 

∑ [𝑀(𝑥, 𝑎0(𝑥), 𝑣(𝑥), 𝑝0(𝑥)) − 𝑀(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

≤ 0      (25) 

выполнялись для всех допустимых управлений 𝑢(𝑡) и 𝑣(𝑥) соответственно. 

Неравенства (24) и (25) представляют собой аналог дискретного принципа макси-

мума (см., например, [5, 13]) для рассматриваемой задачи. 

Заметим, что необходимые условия оптимальности допускают упрощения. Исполь-

зуя произвольность допустимых управлений 𝑢(𝑡)  и 𝑣(𝑥),  доказывается следующее 

утверждение. 

Теорема 2. Пусть множества (18) и (19) выпуклы. Тогда для оптимальности допу-

стимых управлений 𝑢0(𝑡) и 𝑣0(𝑥) необходимо, чтобы неравенства 
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∑ [𝐻(𝜃, 𝑥, 𝑧0(𝜃, 𝑥), 𝑢(𝜃), 𝜓0(𝜃, 𝑥)) − 𝐻(𝜃, 𝑥, 𝑧0(𝜃, 𝑥), 𝑢0(𝜃), 𝜓0(𝜃, 𝑥))]

𝑥1−1

𝑥=𝑥0

≤ 0,    (26) 

𝑀(𝜉, 𝑎0(𝜉), 𝑣(𝜉), 𝑝0(𝜉)) − 𝑀(𝜉, 𝑎0(𝜉), 𝑣0(𝜉), 𝑝0(𝑡, 𝜉)) ≤ 0                    (27) 

выполнялось для всех 𝜃 ∈ 𝑇, 𝑢 ∈ 𝑈 и 𝜉 ∈ 𝑋\𝑥1, 𝑣 ∈ 𝑉 соответственно. 

Замечание. Можно показать, что результаты теорем 1 и 2 равносильны. 

Заключение 

В статье рассмотрена одна дискретная задача оптимального управления при пред-

положении, что процесс описывается двумерным разностным уравнением типа Воль-

терра, а начальное условие, являясь управляемым, определяется из задачи Коши для не-

линейного разностного уравнения Вольтерра. При предположении выпуклости аналогов 

множеств допустимых скоростей рассматриваемых уравнений доказано необходимое 

условие оптимального первого порядка в форме дискретного аналога принципа макси-

мума Понтрягина. 
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Abstract. A non-standard optimal control problem governed by a system of ordinary dif-

ferential equations with a general multi-point quality criterion is analyzed. The control do-

main represents a convex and bounded set. We derive a second-order formula for the incre-

ment of the functional associated with two admissible controls. This result allows us to 

prove an analogue of the linearized maximum principle introduced by L. S. Pontryagin. 

Furthermore, we investigate the case when this principle degenerates into what is known as 

the quasi-singular scenario. Finally, integral pointwise necessary conditions ensuring the 

optimality of such quasi-singular controls are formulated in a constructively applicable 

form. 
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Введение 

В монографии [1] Н. Н. Моисеев рассмотрел задачу оптимального управления, ди-

намика которой описывался одной системой обыкновенных дифференциальных уравне-

ний и нетиповым функционалом качества. Для рассматриваемой задачи оптимального 

управления он доказал необходимое условие оптимальности в форме принципа макси-

мума Л.  С. Понтрягина [2, 3]. 

В предлагаемой работе рассматривается аналогичная задача оптимального управ-

ления, но с более общим многоточечным функционалом качества, где область управле-

ния является выпуклым ограниченным множеством. Учитывая специфические особен-

ности функционала качества, в отличие от известных работ (см., например, [1–5]), сопря-

женная функция введена как решение линейного интегрального уравнения типа Воль-

терра, что позволила построить общую формулу приращения критерия качества при ме-

нее жестких ограничениях. Доказан аналог линеаризованного принципа максимума [4]. 

Отдельно рассмотрен случай его вырождения (квазиособый случай) [5–8]. Применяя ана-

лог схему вывода необходимых условий оптимальности квазиособых управлений из ра-

бот [7, 8], получены интегральное и поточечное необходимые условия оптимальности 

квазиособых управлений, позволяющие сузить множество допустимых управлений, по-

дозрительных на оптимальность. 
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1. Постановка задачи 

Пусть управляемый непрерывный процесс на заданном отрезке времени 𝑇 = [𝑡0, 𝑡1] 
описывается задачей Коши для системы нелинейных обыкновенных дифференциальных 

уравнений  

𝑥̇(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)),       𝑡 ∈ 𝑇,                                                     (1.1) 

𝑥(𝑡0) = 𝑥0.                                                                          (1.2) 

Предполагается, что заданная n-мерная вектор-функция 𝑓(𝑡, 𝑥, 𝑢), непрерывна по 

совокупности переменных вместе с частными производными по (𝑥, 𝑢)  до второго по-

рядка включительно, 𝑥0 − заданный постоянный n-мерный вектор, 𝑢(𝑡) − 𝑟 -мерный, ку-

сочно-непрерывный вектор управляющих воздействий со значениями из заданного непу-

стого, ограниченного и выпуклого множества 𝑈 ⊂ 𝑅𝑟 (область управления), т.е. 

𝑢(𝑡) ∈ 𝑈 ⊂ 𝑅𝑟 , 𝑡 ∈ 𝑇.                                                           (1.3) 

Каждую управляющую функцию 𝑢(𝑡), удовлетворяющую этим требованиям, назо-

вем допустимым управлением.  

Считается, что при каждом заданном допустимом управлении задача Коши (1.1)–

(1.2) имеет единственное непрерывное и кусочно-гладкое решение (т.е. производная ре-

шения задачи Коши кусочно-непрерывная вектор-функция с конечным числом точек раз-

рыва первого рода). 

Через 𝑇𝑖, 𝑖 = 1, 𝑘̅̅ ̅̅̅ (𝑡0 < 𝑇1 < 𝑇2 < ⋯ < 𝑇𝑘 ≤ 𝑡1) − обозначим заданные точки. 

Пусть 𝜑(𝑥1, … , 𝑥𝑘) − заданная, дважды непрерывно дифференцируемая скалярная 

функция, а 𝐹(𝑡, 𝑠, 𝑎, 𝑏) − заданная скалярная функция, непрерывная по совокупности пе-

ременных вместе с частными производными по (𝑎, 𝑏) до второго порядка включительно. 

На решениях задачи Коши (1.1)–(1.2), порожденных всевозможными допустимыми 

управлениями, определим функционал  

𝐽(𝑢) = 𝜑(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘)) + ∫ ∫ 𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))𝑑𝑠

𝑡1

𝑡0

𝑑𝑡

𝑡1

𝑡0

               (1.4) 

и рассмотрим задачу о нахождении минимального значения функционала (1.4) при огра-

ничениях (1.1)–(1.3). 

Заметим, что некоторые практические задачи оптимального управления c нетипо-

вым критерием качества перечислены в монографии [1]. В частности, задачи оптималь-

ного управления с нетиповым критерием качества возникают в задачах оптимального 

синтеза. 

Некоторые задачи оптимального управления, с нетиповым функционалом качества 

исследованы в работах [9–11]. 

Допустимое управление 𝑢(𝑡), доставляющее минимальное значение функционалу 

(1.4), при ограничениях (1.1)–(1.3), назовем оптимальным управлением, а соответствую-

щий процесс (𝑢(𝑡), 𝑥(𝑡)) – оптимальным процессом.  

Задача заключается в нахождении необходимых условий оптимальности первого и 

второго порядков в рассматриваемой задаче оптимального управления.  

 

2. Специальная формула приращения второго порядка функционала  

Пусть (𝑢(𝑡), 𝑥(𝑡)) и (𝑢̅(𝑡) = 𝑢(𝑡) + ∆𝑢(𝑡), 𝑥̅(𝑡) = 𝑥(𝑡) + ∆𝑥(𝑡)) − некоторые допу-

стимые процессы.  
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Тогда приращение 𝛥𝑥(𝑡)  траектории 𝑥(𝑡)  будет решением следующей задачи 

Коши: 

∆𝑥̇(𝑡) = 𝑓(𝑡, 𝑥̅(𝑡), 𝑢̅(𝑡)) − 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)),                                        (2.1) 

∆𝑥(𝑡0) = 0.                                                                       (2.2) 

Введем аналог функции Понтрягина: 

𝐻(𝑡, 𝑥, 𝑢, 𝜓) = 𝜓′𝑓(𝑡, 𝑥, 𝑢), 

где штрих (') операция транспонирования, а 𝜓(𝑡)  пока произвольная n-мерная вектор-

функция. 

Учитывая введенные обозначения и выражение аналога функции Понтрягина, при-

ращение функционала (1.4) можно представить в виде 

𝐽(𝑢̅) − 𝐽(𝑢) = 𝜑(𝑥̅(𝑇1), 𝑥̅(𝑇2), … , 𝑥̅(𝑇𝑘)) − 

−𝜑(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘)) + ∫ ∫ (𝐹(𝑡, 𝑠, 𝑥̅(𝑡), 𝑥̅(𝑠)) − 𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))) 𝑑𝑠

𝑡1

𝑡0

𝑑𝑡

𝑡1

𝑡0

+ 

+ ∫ 𝜓′(𝑡)∆𝑥̇(𝑡)𝑑𝑡

𝑡1

𝑡0

− ∫ [𝐻(𝑡, 𝑥̅(𝑡), 𝑢̅(𝑡), 𝜓(𝑡))

𝑡1

𝑡0

− 𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))]𝑑𝑡.     (2.3)  

Используя формулу Тейлора, после некоторых преобразований, из формулы прира-

щения (2.3) получаем, что  

𝐽(𝑢̅) − 𝐽(𝑢) = ∑
𝜕𝜑′(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖

𝑘

𝑖=1

𝛥𝑥(𝑇𝑖) + 

+
1

2
∑ ∑ 𝛥𝑥′(𝑇𝑖)

𝜕𝜑′(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖𝜕𝑥𝑗

𝑘

𝑗=1

𝑘

𝑖=1

𝛥𝑥(𝑇𝑗) + 𝑜1 ([∑‖𝛥𝑥(𝑇𝑖)‖

𝑘

𝑖=1

]

2

) + 

+ ∫ 𝜓′(𝑡)∆𝑥̇(𝑡)𝑑𝑡

𝑡1

𝑡0

− ∫
𝜕𝐻′(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑥
𝛥𝑥(𝑡)

𝑡1

𝑡0

𝑑𝑡 − 

−
1

2
∫ [𝛥𝑥′(𝑡)

𝜕𝐻′(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑥2
𝛥𝑥(𝑡) +

𝑡1

𝑡0

 

+ 2𝛥𝑢′(𝑡)
𝜕𝐻′(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢𝜕𝑥
𝛥𝑥(𝑡) + 𝛥𝑢′(𝑡)

𝜕𝐻′(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢2
𝛥𝑢(𝑡)] 𝑑𝑡 − 

− ∫ 𝑜2[(‖∆𝑥(𝑡)‖ + ‖∆𝑢(𝑡)‖)2]𝑑𝑡

𝑡1

𝑡0

+ ∫ ∫ [
𝜕𝐹′(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎
𝛥𝑥(𝑡)

𝑡1

𝑡0

𝑡1

𝑡0

+ 

+
𝜕𝐹′(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏
𝛥𝑥(𝑠)] 𝑑𝑠𝑑𝑡 + 

+
1

2
∫ ∫ [𝛥𝑥′(𝑡)

𝜕𝐹 (𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎2
𝛥𝑥(𝑡) +

𝑡1

𝑡0

𝑡1

𝑡0

2𝛥𝑥′(𝑡)
𝜕𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎𝜕𝑏
𝛥𝑥(𝑠) + 
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+𝛥𝑥′(𝑠)
𝜕𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑏2
𝛥𝑥(𝑠)] 𝑑𝑠𝑑𝑡 + 

+ ∫ ∫ 𝑜3([‖∆𝑥(𝑡)‖ + ‖∆𝑥(𝑠)‖]2)𝑑𝑠

𝑡1

𝑡0

𝑑𝑡

𝑡1

𝑡0

.                                     (2.4) 

Ясно, что  

𝛥𝑥(𝑡) = ∫ 𝛥𝑥̇(𝜏)𝑑𝜏

𝑡

𝑡0

.                                                  (2.5) 

Из формулы (2.5) получаем, что  

∆𝑥(𝑇𝑖) = ∫ 𝛼𝑖(𝑡)𝛥𝑥̇(𝑡)𝑑𝑡

𝑡1

𝑡0

.                                                   (2.6) 

Здесь 𝛼𝑖(𝑡) характеристическая функция отрезка [𝑡0, 𝑇𝑖]. 
Используя, формулы (2.5) и (2.6) формула приращения (2.4) может быть представ-

лено в виде 

𝐽(𝑢̅) − 𝐽(𝑢) = ∫ ∑ 𝛼𝑖(𝑡)
𝜕𝜑′(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖

𝑘

𝑖=1

𝑡1

𝑡0

𝛥𝑥̇(𝑡)𝑑𝑡 + 

+
1

2
∑ ∑ 𝛥𝑥′(𝑇𝑖)

𝜕2𝜑(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖𝜕𝑥𝑗
𝛥𝑥(𝑇𝑗)

𝑘

𝑗=1

𝑘

𝑖=1

+ 𝑜1 ([∑‖𝛥𝑥(𝑇𝑖)‖

𝑘

𝑖=1

]

2

) + 

+ ∫ 𝜓′(𝑡)𝛥𝑥̇(𝑡)𝑑𝑡

𝑡1

𝑡0

− ∫ [∫
𝜕𝐻′(𝜏, 𝑥(𝜏), 𝑢(𝜏), 𝜓(𝜏))

𝜕𝑥
𝑑𝜏

𝑡1

𝑡 

] 𝛥𝑥̇(𝑡)𝑑𝑡

𝑡1

𝑡0

− 

− ∫
𝜕𝐻′(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢
∆𝑢(𝑡)𝑑𝑡

𝑡1

𝑡0 

−
1

2
∫ [𝛥𝑥′(𝑡)

𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑥2
𝛥𝑥(𝑡)

𝑡1

𝑡0

+ 

+2𝛥𝑢′(𝑡)
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢𝜕𝑥
𝛥𝑥(𝑡) + 𝛥𝑢′(𝑡)

𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢2
𝛥𝑢(𝑡)] 𝑑𝑡 − 

− ∫ 𝑜2([‖∆𝑥(𝑡)‖ + ‖∆𝑢(𝑡)‖]2)𝑑𝑡

𝑡1

𝑡0

+ ∫ ∫ [∫
𝜕𝐹′(𝜏, 𝑠, 𝑥(𝜏), 𝑥(𝑠))

𝜕𝑎
𝑑𝜏

𝑡1

𝑡 

]

𝑡1

𝑡0

∆𝑥̇(𝑡)𝑑𝑠

𝑡1

𝑡0

𝑑𝑡 + 

+ ∫ ∫ [∫
𝜕𝐹′(𝑠, 𝜏, 𝑥(𝑠), 𝑥(𝜏))

𝜕𝑏
𝑑𝜏

𝑡1

𝑡 

]

𝑡1

𝑡0

∆𝑥̇(𝑡)𝑑𝑠

𝑡1

𝑡0

𝑑𝑡 + 

+
1

2
∫ ∫ [𝛥𝑥′(𝑡)

𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎2
𝛥𝑥(𝑡)

𝑡1

𝑡0

𝑡1

𝑡0

+ 2𝛥𝑥′(𝑡)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎𝜕𝑏
𝛥𝑥(𝑠) + 

+ 𝛥𝑥′(𝑠)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏2
𝛥𝑥(𝑠)] 𝑑𝑠𝑑𝑡 + ∫ ∫ 𝑜3([‖∆𝑥(𝑡)‖ + ‖∆𝑥(𝑠)‖]2)𝑑𝑠

𝑡1

𝑡0

𝑑𝑡

𝑡1

𝑡0

. (2.7) 



Об оптимальности квазиособых управлений в одной задаче… 

21 

Теперь предположим, что произвольная вектор-функция 𝜓(𝑡)  является решением 

линейного интегрального уравнения 

𝜓(𝑡) = − ∑ 𝛼𝑖(𝑡)
𝜕𝜑′(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖

𝑘

𝑖=1

+ ∫
𝜕𝐻(𝜏, 𝑥(𝜏), 𝑢(𝜏), 𝜓(𝜏))

𝜕𝑥
𝑑𝜏

𝑡1

𝑡 

− 

− ∫ [ ∫
𝜕𝐹(𝜏, 𝑠, 𝑥(𝜏), 𝑥(𝑠))

𝜕𝑎
𝑑𝑠

𝑡1

𝑡0 

]

𝑡1

𝑡

𝑑𝜏 − ∫ [ ∫
𝜕𝐹(𝑠, 𝜏, 𝑥(𝑠), 𝑥(𝜏))

𝜕𝑏

𝑡1

𝑡0 

𝑑𝑠] 𝑑𝜏

𝑡1

𝑡

.  

Тогда формула приращения (2.7) примет вид  

𝐽(𝑢̅) − 𝐽(𝑢) = − ∫
𝜕𝐻′(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢
∆𝑢(𝑡)𝑑𝑡

𝑡1

𝑡0 

+ 

+
1

2
∑ ∑ 𝛥𝑥′(𝑇𝑖)

𝜕2𝜑(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖𝜕𝑥𝑗
𝛥𝑥(𝑇𝑗)

𝑘

𝑗=1

𝑘

𝑖=1

− 

−
1

2
∫ [𝛥𝑥′(𝑡)

𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑥2
𝛥𝑥(𝑡)

𝑡1

𝑡0

+ 

+2𝛥𝑢′(𝑡)
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢𝜕𝑥
𝛥𝑥(𝑡) + 𝛥𝑢′(𝑡)

𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢2
𝛥𝑢(𝑡)] 𝑑𝑡 − 

+
1

2
∫ ∫ [𝛥𝑥′(𝑡)

𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎2
𝛥𝑥(𝑡)

𝑡1

𝑡0

𝑡1

𝑡0

+ 2𝛥𝑥′(𝑡)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎𝜕𝑏
𝛥𝑥(𝑠) + 

+ 𝛥𝑥′(𝑠)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏2
𝛥𝑥(𝑠)] 𝑑𝑠𝑑𝑡 − 

+𝑜1 ([∑‖𝛥𝑥(𝑇𝑖)‖

𝑘

𝑖=1

]

2

) − ∫ 𝑜2([‖∆𝑥(𝑡)‖ + ‖∆𝑢(𝑡)‖]2)𝑑𝑡

𝑡1

𝑡0

+ 

+ ∫ ∫ 𝑜3([‖∆𝑥(𝑡)‖ + ‖∆𝑥(𝑠)‖]2)𝑑𝑠

𝑡1

𝑡0

𝑑𝑡

𝑡1

𝑡0

.                                 (2.8) 

Используя задачу (2.1)–(2.2) по аналогии с [6] можно доказать справедливость 

оценки 

‖∆𝑥(𝑡)‖ ≤ 𝐿 ∫‖∆𝑢(𝜏)‖𝑑𝜏

𝑡

𝑡0

,                                                  (2.9) 

где 𝐿 = 𝑐𝑜𝑛𝑠𝑡 > 0 − некоторая постоянная. 

Далее, в силу гладкости правой части уравнения (1.1) выводится, что 𝛥𝑥(𝑡) явля-

ется решением линеаризованной задачи:  

∆𝑥̇(𝑡) = 𝑓𝑥(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 𝛥𝑥(𝑡) − 𝑓𝑢(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 𝛥𝑢(𝑡) + 

+𝑜4(‖∆𝑥(𝑡)‖ + ‖∆𝑢(𝑡)‖), 𝑡 ∈ 𝑇,                                            (2.10) 

∆𝑥(𝑡0) = 0.                                                                   (2.11) 
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Так как по предложению, область управления 𝑈 выпукло, то специальное прираще-

ние допустимого управления 𝑢(𝑡) можно определить по формуле 

∆𝑢𝜀(𝑡) = 𝜀 [𝑣(𝑡) − 𝑢(𝑡)], 𝑡 ∈ 𝑇.                                             (2.12) 

Здесь 𝑣(𝑡) −  произвольное допустимое управление, а 𝜀 ∈ [0, 1]  произвольное 

число.   

Через ∆𝑥𝜀(𝑡)  обозначим, специальное приращение траектории 𝑥(𝑡) , отвечающее 

специальному приращению (2.12) управления 𝑢(𝑡).  

Учитывая оценку (2.9) и формулу (2.12), с помощью линеаризованной задачи 

(2.10)–(2.11) доказывается справедливость следующего разложения: 

∆𝑥𝜀(𝑡) = 𝜀 𝑙(𝑡) + 𝑜5(𝜀; 𝑡).                                                     (2.13) 

Здесь 𝑙(𝑡) − n-мерная вектор-функция, являющаяся решением задачи 

𝑙(̇𝑡) = 𝑓𝑥(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 𝑙(𝑡) − 𝑓𝑢(𝑡, 𝑥(𝑡), 𝑢(𝑡)) [𝑣(𝑡) − 𝑢(𝑡)], 𝑡 ∈ 𝑇,              (2.14) 

𝑙(𝑡0) = 0.                                                                   (2.15) 

Учитывая формулы (2.12) и (2.13), из формулы приращения (2.8) получаем, что 

𝐽(𝑢 + ∆𝑢𝜀) − 𝐽(𝑢) = −𝜀 ∫
𝜕𝐻′(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢
[𝑣(𝑡) − 𝑢(𝑡)]𝑑𝑡

𝑡1

𝑡0 

+ 

+
𝜀2

2
∑ ∑ 𝑙′(𝑇𝑖)

𝜕2𝜑(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖𝜕𝑥𝑗
𝑙(𝑇𝑗)

𝑘

𝑗=1

𝑘

𝑖=1

− 

−
𝜀2

2
∫ [𝑙′(𝑡)

𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑥2
𝑙(𝑡)

𝑡1

𝑡0

+ 

 

+2[𝑣(𝑡) − 𝑢(𝑡)]′
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢𝜕𝑥
𝑙(𝑡) + 

+ [𝑣(𝑡) − 𝑢(𝑡)]′
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢2
[𝑣(𝑡) − 𝑢(𝑡)]] 𝑑𝑡 + 

+
𝜀2

2
∫ ∫ [𝑙′(𝑡)

𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎2
𝑙(𝑡)

𝑡1

𝑡0

𝑡1

𝑡0

+ 2𝑙′(𝑡)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎𝜕𝑏
𝑙(𝑠) + 

+ 𝑙′(𝑠)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏2
𝑙(𝑠)] 𝑑𝑠𝑑𝑡 + 𝑜(𝜀2).                       (2.16) 

 

 

3. Необходимые условия оптимальности первого и второго порядков 

Специальное разложение (2.16) функционала (1.4) позволяет получить ряд необхо-

димых условий оптимальности первого и второго порядков.  

Пусть 𝑢(𝑡) оптимальное управление. Тогда из разложения (2.16) следует. 

Теорема 1. Для оптимальности допустимого управления 𝑢(𝑡) в задаче (1.1)–(1.4) 

необходимо, чтобы для всех 𝑣(𝑡) ∈ 𝑈, 𝑡 ∈ Т выполнялось неравенство  
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∫
𝜕𝐻′(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢
[𝑣(𝑡) − 𝑢(𝑡)]𝑑𝑡

𝑡1

𝑡0 

≤ 0.                                 (3.1) 

Неравенство (3.1) является аналогом линеаризованного принципа максимума (см., 

например, [3–6]). 

Учитывая произвольность допустимого управления 𝑣(𝑡), и используя неравенство 

(3.1), можно доказать следующую теорему.  

Теорема 2. Для оптимальности допустимого управления 𝑢(𝑡) в рассматриваемой 

задаче необходимо, чтобы неравенство  

𝜕𝐻′(𝜃, 𝑥(𝜃), 𝑢(𝜃), 𝜓(𝜃))

𝜕𝑢
[𝑣 − 𝑢(𝜃)] ≤ 0                                     (3.2) 

выполнялось для всех 𝜃 ∈ [𝑡0,𝑡1) и 𝑣 ∈ 𝑈. 

Доказательство. Пусть 𝑣 ∈ 𝑈 − произвольный вектор, а 𝜀 > 0 − произвольное до-

статочно малое число.  

Тогда произвольное допустимое управление 𝑣(𝑡) можно определить по формуле  

𝑣(𝑡) = {
𝑣, 𝑡 ∈ [𝜃, 𝜃 + 𝜀),

𝑢(𝑡), 𝑡 ∈ 𝑇\[𝜃, 𝜃 + 𝜀).
 

Учитывая эту формулу в неравенстве (3.1) после несложных преобразований, по-

лучим, что  

𝜀
𝜕𝐻′(𝜃,𝑥(𝜃),𝑢(𝜃),𝜓(𝜃))

𝜕𝑢
[𝑣 − 𝑢(𝜃)] + 𝑜(𝜀) ≤ 0. 

Из этого неравенства, в силу произвольности 𝜀 > 0 следует неравенство (3.2). 

Здесь 𝜃 ∈ [𝑡0,𝑡1) является произвольной точкой непрерывности управления 𝑢(𝑡).  

Неравенство (3.2) является аналогом дифференциального принципа максимума 

(см., например, [3, 5]). 

Можно показать, что неравенства (3.1) и (3.2) эквивалентны. 

Перейдем к изучению вырождения аналога линеаризованного условия максимума. 

Определение 1. Если для всех допустимых управлений 𝑣(𝑡) выполняется соотно-

шение  

∫
𝜕𝐻′(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢
[𝑣(𝑡) − 𝑢(𝑡)]𝑑𝑡

𝑡1

𝑡0 

= 0, 

то управление 𝑢(𝑡) назовем квазиособым управлением в задаче (1.1)–(1.4). 

Из разложения (2.16) следует утверждение 

Теорема 3. Для оптимальности квазиособого управления 𝑢(𝑡) необходимо, чтобы 

неравенство  

∑ ∑ 𝑙′(𝑇𝑖)
𝜕2𝜑(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖𝜕𝑥𝑗
𝑙(𝑇𝑗)

𝑘

𝑗=1

𝑘

𝑖=1

+ 

∫ ∫ [𝑙′(𝑡)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎2
𝑙(𝑡)

𝑡1

𝑡0

𝑡1

𝑡0

+ 2𝑙′(𝑡)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎𝜕𝑏
𝑙(𝑠) + 

+ 𝑙′(𝑠)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏2
𝑙(𝑠)] 𝑑𝑠𝑑𝑡 − ∫ [𝑙′(𝑡)

𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑥2
𝑙(𝑡)

𝑡1

𝑡0

+ 

+2[𝑣(𝑡) − 𝑢(𝑡)]′
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢𝜕𝑥
𝑙(𝑡) + 
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+ [𝑣(𝑡) − 𝑢(𝑡)]′
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢2
[𝑣(𝑡) − 𝑢(𝑡)]] 𝑑𝑡 ≥ 0                (3.3) 

выполнялось для всех 𝑣(𝑡) ∈ 𝑈, 𝑡 ∈ Т. 

Неравенство (3.3) является неявным необходимым условием оптимальности ква-

зиособых управлений. Из него можно получить необходимое условие оптимальности 

квазиособых управлений, выраженное через параметры рассматриваемой задачи управ-

ления. 

Запишем представление задачи Коши (2.14)–(2.15): 

𝑙(𝑡) = ∫ Ф(𝑡, 𝜏)𝑓𝑢(𝜏, 𝑥(𝜏), 𝑢(𝜏))[𝑣(𝜏) − 𝑢(𝜏)]𝑑𝜏

𝑡

𝑡0

.                               (3.4) 

Здесь Ф(𝑡, 𝜏) (𝑛 × 𝑛) матрица Коши, являющаяся решением задачи  
𝜕Ф(𝑡, 𝜏)

𝜕𝜏
= −Ф(𝑡, 𝜏)𝑓𝑥(𝜏, 𝑥(𝜏), 𝑢(𝜏)), 

Ф(𝑡, 𝑡) = 𝐸, 
где 𝐸 − единичная матрица. 

Введем обозначение 

𝑄(𝑡, 𝜏) = Ф(𝑡, 𝜏)𝑓𝑢(𝜏, 𝑥(𝜏), 𝑢(𝜏)). 

Из представления (3.4) следует, что 

𝑙(𝑇𝑖) = ∫ 𝛼𝑖(𝜏)𝑄(𝑇𝑖, 𝜏)[𝑣(𝜏) − 𝑢(𝜏)]𝑑𝜏

𝑡1

𝑡0

.                                    (3.5) 

Учитывая представление (3.4), получаем, что 

∑ 𝑙′(𝑇𝑖)
𝜕2𝜑(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖𝜕𝑥𝑗
𝑙(𝑇𝑗)

𝑘

𝑖,𝑗=1

= 

= ∫ ∫ [𝑣(𝜏) − 𝑢(𝜏)]′

𝑡1

𝑡0

𝑡1

𝑡0

𝑄′(𝑇𝑖, 𝜏)𝛼𝑖(𝜏)
𝜕2𝜑(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖𝜕𝑥𝑗
× 

× 𝑄(𝑇𝑗 , 𝑠)𝛼𝑗(𝑠)[𝑣(𝑠) − 𝑢(𝑠)]𝑑𝑠𝑑𝜏.                                      (3.6) 

Далее, используя представление (3.4), доказываются тождества 

∫ [𝑣(𝑡) − 𝑢(𝑡)]′
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢𝜕𝑥
𝑙(𝑡)

𝑡1

𝑡0

𝑑𝑡 = 

= ∫ [ ∫[𝑣(𝑡) − 𝑢(𝑡)]′
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢𝜕𝑥
𝑄(𝑡, 𝜏)

𝑡 

𝑡0

[𝑣(𝜏) − 𝑢(𝜏)]𝑑𝜏]

𝑡1

𝑡0

𝑑𝑡,          (3.7) 

∫ 𝑙′(𝑡)
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑥2
𝑙(𝑡)

𝑡1

𝑡0

𝑑𝑡 = ∫ ∫ [𝑣(𝜏) − 𝑢(𝜏)]′

𝑡1

𝑡0

𝑡1

𝑡0

× 

× [ ∫ 𝑄′(𝑡, 𝜏)
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑥2
𝑄(𝑡, 𝑠)𝑑𝑡

𝑡1

max(𝜏,𝑠)

] [𝑣(𝑠) − 𝑢(𝑠)]𝑑𝑠𝑑𝜏,          (3.8) 
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∫ ∫ 𝑙′(𝑡)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎2
𝑙(𝑡)

𝑡1

𝑡0

𝑡1

𝑡0

𝑑𝑠𝑑𝑡 = ∫ ∫ [𝑣(𝛼) − 𝑢(𝛼)]′

𝑡1

𝑡0

𝑡1

𝑡0

× 

× [ ∫ ∫ 𝑄′(𝑡, 𝛼)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎2
𝑄(𝑡, 𝛽)𝑑𝑠

𝑡1

max(𝛼,𝛽)

𝑡1

𝑡0

𝑑𝑡] [𝑣(𝛽) − 𝑢(𝛽)]𝑑𝛼𝑑𝛽,          (3.9) 

 

∫ ∫ 𝑙′(𝑡)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎𝜕𝑏

𝑡1

𝑡0

𝑡1

𝑡0

𝑙(𝑠) = ∫ ∫ [𝑣(𝛼) − 𝑢(𝛼)]′

𝑡1

𝑡0

𝑡1

𝑡0

× 

× [∫ ∫ 𝑄′(𝑡, 𝛼)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎𝜕𝑏
𝑄(𝑠, 𝛽)𝑑𝑠

𝑡1

𝛽

𝑡1

𝛼

𝑑𝑡] [𝑣(𝛽) − 𝑢(𝛽)]𝑑𝛼𝑑𝛽,          (3.10) 

∫ ∫ 𝑙′(𝑡)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏𝜕𝑎

𝑡1

𝑡0

𝑡1

𝑡0

𝑙(𝑠) = ∫ ∫ [𝑣(𝛼) − 𝑢(𝛼)]′

𝑡1

𝑡0

𝑡1

𝑡0

× 

× [∫ ∫ 𝑄′(𝑡, 𝛼)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏𝜕𝑎
𝑄(𝑠, 𝛽)𝑑𝑠

𝑡1

𝛽

𝑡1

𝛼

𝑑𝑡] [𝑣(𝛽) − 𝑢(𝛽)]𝑑𝛼𝑑𝛽,          (3.11) 

∫ ∫ 𝑙′(𝑠)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏2
𝑙(𝑠)

𝑡1

𝑡0

𝑡1

𝑡0

𝑑𝑠𝑑𝑡 = ∫ ∫ [𝑣(𝛼) − 𝑢(𝛼)]′

𝑡1

𝑡0

𝑡1

𝑡0

× 

× [ ∫ ∫ 𝑄′(𝑠, 𝛼)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏2
𝑄(𝑠, 𝛽)𝑑𝑠

𝑡1

max(𝛼,𝛽)

𝑡1

𝑡0

𝑑𝑡] [𝑣(𝛽) − 𝑢(𝛽)]𝑑𝛼𝑑𝛽.          (3.12) 

Здесь, как было отмечено 

𝑄(𝑡, 𝜏) = Ф(𝑡, 𝜏)
𝜕𝑓(𝜏, 𝑥(𝜏), 𝑢(𝜏))

𝜕𝑢
. 

Введем обозначение  

𝐾(𝛼, 𝛽) = −𝑄′(𝑥1, 𝛼)
𝜕2𝜑 (𝑎(𝑥1))

𝜕𝑎2
𝑄(𝑥1, 𝛽) − 

− ∫ [ ∫ 𝑄′(𝑡, 𝛼)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎2
𝑄(𝑡, 𝛽)𝑑𝑡

𝑡1

max(𝛼,𝛽)

]

𝑡1

𝑡0

𝑑𝑠 − 

− ∫ [∫ 𝑄′(𝑡, 𝛼)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎𝜕𝑏
𝑄(𝑠, 𝛽)𝑑𝑠

𝑡1

𝛽

]

𝑡1

𝛼

𝑑𝑡 − 

− ∫ [∫ 𝑄′(𝑠, 𝛼)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏𝜕𝑎
𝑄(𝑡, 𝛽)𝑑𝑠

𝑡1

𝛽

]

𝑡1

𝛼

𝑑𝑡 − 

− ∫ [ ∫ 𝑄′(𝑠, 𝛼)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏2
𝑄(𝑠, 𝛽)𝑑𝑠

𝑡1

max(𝛼,𝛽)

]

𝑡1

𝑡0

𝑑𝑡 − 
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− ∫ 𝑄′(𝑡, 𝛼)
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑥2
𝑄(𝑡, 𝛽)𝑑𝑡

𝑡1

max(𝛼,𝛽)

. 

Учитывая введенное обозначение и тождества (3.7)–(3.12), неравенство (3.3) пред-

ставляется в виде  

∫ ∫ [𝑣(𝛼) − 𝑢(𝛼)]′𝐾(𝛼, 𝛽)

𝑡1 

𝑡0

[𝑣(𝛽) − 𝑢(𝛽)]𝑑𝛼

𝑡1

𝑡0

𝑑𝛽 + 

+2 ∫ [ ∫[𝑣(𝑡) − 𝑢(𝑡)]′
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢𝜕𝑥
𝑄(𝑡, 𝜏)

𝑡 

𝑡0

[𝑣(𝜏) − 𝑢(𝜏)]𝑑𝜏]

𝑡1

𝑡0

𝑑𝑡 + 

+ ∫ [𝑣(𝑡) − 𝑢(𝑡)]′
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢2
[𝑣(𝑡) − 𝑢(𝑡)]𝑑𝑡

𝑡1

𝑡0

≤ 0.               (3.13) 

Таким образом, доказано следующее утверждение. 

Теорема 4. Для оптимальности квазиособого управления 𝑢(𝑡) в рассматриваемой 

задаче оптимального управления необходимо, чтобы неравенство (3.13) выполнялось для 

всех 𝑣(𝑡) ∈ 𝑈, 𝑡 ∈ Т. 

Как видно, неравенство (3.13) в отличие от неравенства (3.3), носит конструктив-

ный характер. Из этого интегрального необходимого условия оптимальности, используя 

произвольность допустимого управления 𝑣(𝑡), можно получить относительно легко про-

веряемые поточечные необходимые условия оптимальности второго порядка.  

Приведем один из них.  

Теорема 5. Для оптимальности квазиособого управления 𝑢(𝑡) рассматриваемой за-

даче необходимо, чтобы для всех 𝑣 ∈ 𝑈 и 𝜃 ∈ [𝑡0, 𝑡1) выполнялось неравенство  

[𝑣 − 𝑢(𝜃)]′
𝜕2𝐻(𝜃, 𝑥(𝜃), 𝑢(𝜃), 𝜓(𝜃))

𝜕𝑢2
[𝑣 − 𝑢(𝜃)] ≤ 0.                          (3.14) 

Заметим, что ряд необходимых условий оптимальности квазиособых управлений в 

задачах оптимального управления динамика, которые описываются обыкновенными 

дифференциальными уравнениями, с терминальным критерием качества получены в ра-

ботах [3–7]. 

 

Заключение 

В работе, при предположении выпуклости области управления, с помощью квази-

вариаций вычислено специальное приращение второго порядка функционала качества. 

Используя специального приращение функционала качества получены необходимые 

условия оптимальности первого порядка в форме линеаризованного интегрального и 

дифференциального условия оптимальности.  

Доказано общее необходимое условие оптимальности квазиособых управлений, 

носящих конструктивный характер.  

Изучен один частный случай (теорема 5). 

Список источников 

1. Элементы теории оптимальных систем / Моисеев. Н. Н. М.: Наука, 1975. 528 с. 

2. Принцип максимума в оптимальном управлении / Понтрягин Л. С. М.: URSS, 

2024. 72 с. 



Об оптимальности квазиособых управлений в одной задаче… 

27 

3. Методы оптимизации / Габасов Р., Кириллова Ф. М., Альсевич В. В. Минск: Изд-

во "Четыре четверти", 2011. 472 с. ISBN: 978-985-6981-52-7. EDN XTHIJL. 

4. Принцип максимума в теории оптимального управления / Габасов Р., Кирил-

лова Ф. М. М.: URSS, 2018. 272 с. 

5. Особые оптимальные управления / Габасов Р., Кириллова Ф. М. М: URSS, 2013. 

256 с. 

6. Особые управления в системах с запаздыванием / Мансимов К. Б. Баку: ЭЛМ, 

1999. 175 с. 

7. Мансимов К. Б. Многоточечные необходимые условия оптимальности квазиосо-

бых управлений // Автоматика и телемеханика. 1982. № 10. С. 53–58. 

8. Исмайлов Р. Р., Мансимов К. Б. Об условиях оптимальности в одной ступенчатой 

задаче управления // Журн. вычисл. матем. и матем. физики. 2006. Т. 46, № 10. 

С. 1674–1686. 

9. Нагиева И. Ф., Мансимов К. Б. Необходимые условия оптимальности особых 

управлений в задаче управления типа Моисеева // Проблемы управления и инфор-

матики. 2006. № 5. С. 52–63. 

10. Мансимов К. Б., Нагиева И. Ф. Необходимые условия оптимальности первого и 

второго порядков в одной задаче оптимального управления с нетипичным крите-

рием качества // Вестник Томского унив. Управление, техника и информатика. 

2023. № 64. С. 11–20. DOI 10.17223/19988605/64/2. EDN GHXADE. 

11. Mansimov K. B., Nagiyeva I. F. Analogue of Eulers equation and second order optimal-

ity conditions in one N. N. Mouseyev type control problems // Informatics and control 

problems. 2023. Issue 2. P. 67−77. 

References 

1. Moiseev, N. N. (1975), Elements of the Theory of Optimal Systems, Nauka, Moscow, 

528 p. 

2. Pontryagin, L. S. (2024), The Maximum Principle in Optimal Control, URSS, Moscow, 

72 p. 

3. Gabasov, R., Kirillova, F. M. and Alsevich, V. V. (2011), Optimization Methods, Four 

Quarters Publishing House, Minsk, 472 p. 

4. Gabasov, R. and Kirillova, F. M. (2018), The Maximum Principle in Optimal Control 

Theory, URSS, Moscow, 272 p. 

5. Gabasov, R. and Kirillova, F. M. (2013), Special Optimal Controls, URSS, Mos-

cow, 256 p. 

6. Mansimov, K. B. (1999), Singular controls in systems with delay, ELM, Baku, 175 p. 

7. Mansimov, K. B. (1982), "Multipoint necessary optimality conditions for quasi-singular 

controls", Automation and Telemechanics, no 10, pp. 53−58. 

8. Ismailov, R. R. and Mansimov, K. B., (2006), "On optimality conditions in one-step 

control problem", Zhurn. Vychisl. Mat. i Mathematical Physics, vol. 46, no 10, 

pp. 1674–1686. 

9. Nagieva, I. F. and Mansimov, K. B. (2006), "Necessary optimality conditions for singu-

lar controls in a Moiseyev-type control problem", Problems of Control and Informatics, 

no 5, pp. 52−63. 

10. Mansimov, K. B. and Nagieva, I. F. (2023) "Necessary optimality conditions of the first 

and second orders in one optimal control problem with an atypical quality criterion", 

Bulletin of Tomsk University. Series: Management, Engineering and Informatics, is-

sue 64, pp. 11−20. 



И. Ф. Нагиева, К. Б. Мансимов 

28 

11. Mansimov, K. B. and Nagiyeva, I.  F. (2023) "Analogue of Eulers equation and second-

order optimality conditions in one N. N. Mouseyev type control problems", Informatics 

and control problems, issue 2, pp. 67−77. 

Информация об авторах:  

И. Ф. Нагиева – научный сотрудник лаборатории "Методы управления в сложных ди-

намических системах" института Систем управления Министерства Науки и Образо-

вания Азербайджана (Азербайджан, AZ 1141, г. Баку, ул. Бахтияра Вагабзаде, д. 68); 

К. Б. Мансимов – доктор физико-математических наук, профессор, заведующий лабо-

раторией "Методы управления в сложных динамических системах" института Систем 

управления Министерства Науки и Образования Азербайджана (Азербайджан, AZ 

1141, г. Баку, ул. Бахтияра Вагабзаде, д. 68), AuthorID247352. 

Information about the authors:  

I. F. Nagiyeva – research fellow of the laboratory "Control Methods in Complex Dynamic 

Systems" of the Institute of Control Systems of the Ministry of Science and Education of 

Azerbaijan (68, B. Vagabzade St., Baku, Azerbaijan, AZ1141); 

К. B. Mansimov – Doctor of Sciences (Physical and Mathematical), Professor, Head of the 

Laboratory "Control in Complex Dynamical Systems" of the Institute of Control Systems of 

the Ministry of Science and Education of Azerbaijan (68, B. Vagabzade St., Baku, Azerbai-

jan, AZ1141), AuthorID 247352; 

 



ВЕСТНИК ПЕРМСКОГО УНИВЕРСИТЕТА 

2025                                 Математика. Механика. Информатика                                4(71) 

29 

 

 

 

 

 

МЕХАНИКА 
 
 
 

Научная статья 

УДК 539.3, 514.743 

DOI: 10.17072/1993-0550-2025-4-29-45 

https://elibrary.ru/dtmrpk 
 

Визуализация вращения материала при простом сдвиге: 
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Аннотация. В работе рассматривается применение компьютерной графики и 

операторной школы тензорного исчисления для наглядной визуализации 

используемых понятий и их физического смысла в механике деформируемых 

сред. Представленные в статье иллюстрации могут быть эффективным учебным 

материалом по нелинейной механике. Полученные с помощью специально 

разработанных программ изображения практически невозможно воспроизвести 

вручную. Они отражают точные геометрические преобразования, возникающие 

при конечных деформациях. Авторы считают, что для понимания физического 

смысла тензорных величин желательно не говорить о матрицах коэффициентов. 

Такие матрицы являются компонентами тензора, возникающими при 

представлении его с помощью диад из базисных векторов выбранной системы 

отсчета. Матрицы необходимы преимущественно для реализации 

вычислительных алгоритмов. Однако истинный физический смысл тензорных 

величин становится более понятным, когда их рассматривают как операторы, 

отображающие векторы в новые векторы трехмерного евклидова пространства. 

Такой подход лежит в основе данной работы.  В качестве примера выбрана задача 

моделирования деформаций материала в условиях простого сдвига. 

Испытательная установка неподвижна. Жесткие пластины, которые деформируют 

материал, двигаются поступательно (без поворотов). Тем не менее, все малые 

области материала совершают вращательное движение, эквивалентное повороту 

абсолютно твердого тела. Для специалистов, решающих задачи в условиях малых 

деформаций, это явление может казаться парадоксальным. В то же время оно 

хорошо известно в теории конечных деформаций. Представленные в статье 

пояснения физического смысла тензоров и полученные на компьютере 
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иллюстрации позволяют разрешить это кажущееся противоречие. Тем самым 

подчеркиваются преимущества операторного подхода в преподавании и изучении 

нелинейной теории конечных деформаций.  

Ключевые слова: конечные деформации; простой сдвиг; градиент деформаций; 

вращательное движение материала; тензор вихря; тензор спина. 
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Visualization of Material Rotation in Simple Shear:  

An Operator-Based Approach in Continuum Mechanics 

Implemented With Computer Graphics 

Kseniia A. Mokhireva1, Alexander L. Svistkov2 
1,2Institute of Continuous Media Mechanics, Perm, Russia  
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Abstract. In this paper, we develop a physically meaningful and visually grounded 

framework for understanding mechanics of deformable media by combining the operator-

based formulation of tensor calculus with computer graphics. The resulting images presented 

can be used as a powerful educational tool for teaching nonlinear continuum mechanics and, 

additionally, these images are able to accurately depict complex geometric transformations 

induced by finite deformations. Being generated by specialized programs, they cannot be 

reproduced manually.  We believe that a proper understanding of the physical meaning of 

tensors requires moving beyond their definition as simple “matrices of coefficients”, because 

matrices are only the components of a tensor that arise when it is expressed in terms of the 

dyadic products of basis vectors in a chosen coordinate system. Matrices are mainly used in 

computing. However, the true physical meaning of tensors becomes clear when they are 

interpreted as linear operators acting on vectors in three-dimensional Euclidean space. The 

operator-based approach lies at the core of the present work. As a representative example, 

we consider the deformation of a material under simple shear. The testing apparatus is fixed, 

and the rigid plates used to apply shear deformation move translationally, without any 

rotation. Nevertheless, each infinitesimal material element undergoes a rigid-body-like 

rotation. Although this behavior is well known in the context of finite deformation theory, 

it appears paradoxical to researchers accustomed to small strains. The physical interpretation 

of tensors in combination with computer-generated visualizations helps resolve this apparent 

contradiction. The paper clearly demonstrates the pedagogical advantages of the operator-

based approach for teaching and understanding nonlinear theories of finite deformations. 

Keywords: finite deformations; simple shear; deformation gradient; rotational motion; 

vorticity tensor; spin tensor. 
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Введение 

Операторная школа тензорного исчисления рассматривает тензоры второго ранга 

как векторы девятимерного пространства. С этой точки зрения тензоры 

интерпретируются как множество линейных операторов, действующих в трехмерном 

евклидовом пространстве и отображающих один вектор в другой. Композиция из 

нескольких операторов подразумевает то, что сначала выполняется одно 

преобразование, затем – другое, и так далее. В такой записи знак умножения между 

тензорными величинами опускается. Если осуществляется скалярное умножение 

девятимерных векторов, между ними ставится точка – знак скалярного умножения. 

Операторный подход применяется в механике сплошных сред, в частности в работах 

Трусделла [1, 2], Гуртина [3], Свисткова [4] и других авторов. 

При анализе поведения материалов в условиях больших деформаций центральную 

роль играет градиент деформации F [1–8]. Это тензор, преобразующий вектор, 

определяющий взаимное расположение двух близких точек в отсчетной конфигурации, 

в вектор их взаимного расположения в актуальной конфигурации. Для него справедливо 

полярное разложение F = RU = VR, где R – тензор поворота, U и V – правый и левый 

тензоры растяжения. Это разложение позволяет разделить локальное движение 

материала на деформацию и жесткое вращение (поворот как абсолютно твердого тела). 

Однако без наглядной визуализации такие абстрактные конструкции остаются 

малодоступными для восприятия, особенно для исследователей, не 

специализирующихся в нелинейной механике сплошных сред. 

Простой сдвиг [1–3, 5–8] является одним из ярких примеров деформирования 

материала, в котором проявляются локальные вращения при отсутствии поворота всего 

образца. В линейной теории упругости простой сдвиг описывается исключительно 

сдвиговой деформацией в выбранной системе отсчета; при этом нормальные напряжения 

отсутствуют, и вращение материальных элементов деформируемой среды не 

учитывается. Однако при переходе к конечным деформациям картина существенно 

усложняется. Градиент деформации F указывает на два преобразования, которые 

совершаются с малыми элементами среды: растяжение/сжатие и их поворот (или 

наоборот, в зависимости от формы полярного разложения). Это позволяет четко 

различать и физически интерпретировать кинематические характеристики 

вращательного движения, например тензор вихря W  и тензора спина RW  [1–3, 5–8]. 

В настоящей работе предлагается визуально-аналитический инструмент, 

объединяющий операторный подход в механике сплошных сред с наглядностью 

компьютерной графики. Полученные результаты могут быть полезны как при 

обучении основам нелинейной механики сплошных сред, так и при разработке и 

верификации моделей поведения материалов в условиях больших деформаций.  
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1. Градиент деформаций. Полярное разложение 

В данной работе не ставилось задачи давать изложение основных понятий 

операторной школы тензорного исчисления и выкладок нелинейной механики 

деформируемых сред. Соответствующие определения и выводы подробно представлены, 

например, в работах [1–4]. Приведем в статье только некоторые важные пояснения. 

Отметим, что положение материальной точки в отсчетной конфигурации будем 

обозначать радиус-вектором .0x Опишем вокруг этой точки в отсчетной конфигурации 

сферическую поверхность с весьма малым радиусом так, чтобы сама точка находилась в 

ее центре. Эту поверхность образуют материальные точки, «вмороженные» в 

деформируемую среду и движущиеся вместе с ней. Пусть множество векторов 0x  

исходит из выбранной точки, а их концы пробегают все точки сферической 

поверхности. В деформированном состоянии рассматриваемая область приобретает 

иную геометрию. При этом новая геометрия в малой окрестности точки может быть с 

высокой точностью описана с помощью линейного (аффинного) преобразования, 

обозначим его за F (тензор второго ранга). Поверхность полученной геометрической 

фигуры задается множеством векторов ,x  исходящих из той же материальной точки 

среды. Между векторами x  и 0x  существует связь 

...+= 0xFx                                                 (1.0) 

где многоточием обозначены члены более высокого порядка малости. Иными словами, 

F представляет собой производную векторной функции по векторному аргументу: 

0x

x
F




= .                                                           (1.1) 

Тензор F называется градиентом деформации. При этом положение материальных точек 

x в текущий момент времени в формуле (1.1) должно быть функцией радиус-векторов 

,0x  «вмороженных» в сплошную среду, и текущего момента времени t: ( )0 , xxx t= . 

Благодаря линейному преобразованию F, сферическая окрестность в отсчетной 

конфигурации переходит в эллипсоид в текущей конфигурации (рис. 1). На 

иллюстрации приведены рисунки с использованием безразмерных геометрических 

величин. То есть все геометрические размеры поделены на радиус R, выделенной в 

материале малой сферы в отсчетном состоянии. У эллипсоида имеются три главные 

полуоси. Обозначим правую ортонормированную тройку векторов, определяющих их 

направления, символами 321 nnn ,,  (рис. 1, б). Векторы, соединяющие центр эллипсоида 

с его вершинами равны 11n , 22n , 33n . Символами 321  ,, обозначены кратности 

удлинения. Они рассчитываются как отношения длин главных полуосей эллипсоида к 

радиусу исходной сферы R и являются безразмерными величинами. 

Применяя обратное преобразование 
1−

F к градиенту деформации F , можно 

получить тройку векторов 
0
3

0
2

0
1 nnn ,, :  

3
10

32
10

21
10

1 nFnnFnnFn
−−− === ,, .                            (1.2) 

Эти векторы изображены на рис. 1, а. Данная иллюстрация подсказывает, как 

естественным образом ввести тензоры, описывающие как жесткие повороты малых 

областей среды, так и их деформации. Можно показать, что векторы 
0
3

0
2

0
1 nnn ,,  также 

образуют ортонормированную тройку. 
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Известно, что градиент деформации всегда может быть представлен в виде: 

0
3

1

ii

i

i nnF =
=

                                                                     (1.3) 

и справедливы выражения: 0
iii Fnn = , ( )321 ,,i =  и 

 
.ii

i i

nnF =
=

− 0
3

1

1 1


 

 

а б 

Рис. 1. Иллюстрация, поясняющая введение понятия градиента деформации. Сферическая область 

(рис. а) переходит в область, имеющую форму эллипсоида (рис. б). Геометрия изображена в 

безразмерных величинах: все размеры нормированы на радиус сферы R в отсчетной конфигурации 

Действие оператора F можно также проиллюстрировать с помощью рис. 2, 

отражающего фундаментальный принцип разделения движения сплошной среды на 

жесткое вращение и деформацию. Из отсчетного состояния A в текущее состояние C 

можно попасть двумя путями: через промежуточное состояние B или через 

промежуточное состояние D. Это означает, что можно сначала повернуть исходную 

сферу с помощью оператора поворота R (переход в состояние B), а затем растянуть 

полученный объект оператором V. Либо сначала растянуть сферу оператором U, получив 

эллипсоид, а затем повернуть его тем же оператором поворота R.  

Тензоры V, U и R имеют следующий вид: 

i

i

iii

i

iii

i

i ,, nnRnnUnnV === 
===

3

1

000
3

1

3

1

 ,                                        (1.4) 

скаляры 321  ,,  являются собственными значениями тензоров V и U, а 

соответствующие ортонормированные тройки векторов 321 nnn ,,  и 
0
3

0
2

0
1 nnn ,,

 
– их 

собственными векторами: ( )32100 ,,i,, iiiiii === nUnnVn  . 

 

Рис. 2. Иллюстрация, поясняющая введение тензоров, описывающих деформацию и вращение 

сплошной среды 

Непосредственной подстановкой легко убедиться, что градиент деформации 

выражается через эти тензоры в виде: 
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RUVRF == .                                                        (1.5) 

Соотношение (1.5) называется полярным разложением градиента деформации. Тензор R 

является тензором поворота. Он преобразует тройку векторов 
0
3

0
2

0
1 nnn ,,  в тройку

321 nnn ,, , то есть ( ).,,i,ii 3210 == Rnn  

2.  Деформация материала в условиях простого сдвига 

Очень наглядным для получения представлений об основных понятиях механики 

является пример деформирования материала в условиях простого сдвига. Его имеет 

смысл рассматривать на лекциях по нелинейной механике деформируемых сред. 

Иллюстрации, полученные с помощью компьютерных рисунков, дают наглядные 

картинки о действии основных операторов. Речь идет о тензоре поворота, тензоре 

растяжения, деформационном градиенте, тензоре скоростей деформирования, тензоре 

вихря, тензоре спина. При исследовании на простой сдвиг эластомерных материалов 

применяется конструкция, в которой четыре одинаковых образца приклеиваются к 

специально обработанным жестким пластинам. Эта конструкция показана на рис. 3а. В 

центральной части каждого образца реализуется практически однородное 

напряженно-деформированное состояние. Если пластины являются достаточно 

длинными, то области с неоднородным состоянием будут составлять малую часть и 

вносить погрешности, соизмеримые с погрешностями эксперимента. 

Рассмотрим один из этих образцов. Он помещен между двумя горизонтальными 

жесткими пластинами испытательной установки (рис. 3, б) и прочно приклеен к ним. Для 

описания деформаций используется прямоугольная декартова система координат. 

Нижняя пластина неподвижна, верхняя смещается в горизонтальной плоскости вдоль 

первой координатной оси. При этом расстояние между пластинами остается неизменным 

– это характерная особенность простого сдвига (в отличие от чистого сдвига, где это 

условие не выполняется). Количественной мерой сдвига служит параметр: 

b/a= ,                                                             (2.0) 

где a – горизонтальное смещение верхней пластины, b – начальное расстояние между 

пластинами. 

 

а 

 

 

 

 

б 

Рис. 3. Схемы деформирования эластомерного материала в условиях простого сдвига 

 

В образце устанавливается однородное деформированное состояние. Особенности 

возникающих деформаций можно наглядно представить, проследив за превращением 
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сферической области, мысленно выделенной внутри образца (рис. 4, а). Для удобства на 

поверхность сферы нанесены меридианы и параллели. Градиент деформации в данном 

случае имеет вид: .31 iiIF +=   Разлагая радиус-векторы x  и 0x  по базису 

прямоугольной декартовой системы, получаем изменения положения точек среды в 

однородно нагруженном образце  

0Fxx =                                                            (2.1) 

в виде зависимости: ( ) ( ) .xxxxxx
i

i

i

i 3
0
32

0
21

0
3

0
1i

3

1

0
31i

3

1

iiiiiiIi +++=









+= 

==

   

Таким образом, точки среды смещаются в горизонтальной плоскости в 

направлении вектора ,1i  причем величина смещения пропорциональна начальной 

координате ;0
3x  коэффициент пропорциональности равен .  

Далее приведены иллюстрации, построенные для значения = 1.5. Левый и правый 

тензоры растяжения, а также тензор поворота вычисляются по формулам: 

.,, FVRFFUFFV 1Т2Т2 −===                                     (2.2) 

Рассмотрим малую сферическую область с центром в точке :0x  начало векторов 

0x  лежит в центре сферы, а их концы описывают сферическую поверхность (рис. 4, а). 

Под действием градиента деформации F эта область преобразуется в эллипсоид, 

показанный на рис. 4, б. Можно также рассмотреть преобразование той же сферы с 

помощью левого тензора растяжения: .0xVx =  Такое преобразование сферы дает 

эллипсоид, изображенный на рис. 4, в.  

На первый взгляд оба эллипсоида выглядят одинаково, однако, это не так. В первом 

случае (рис. 4, б) параллели остаются в тех же горизонтальных плоскостях, что и до 

деформации; во втором случае (рис. 4, в) они оказываются на наклонных плоскостях. 

Следовательно, операторы F и V  задают разные преобразования, несмотря на внешнее 

сходство очертаний границ. Чтобы получить полное совпадение, необходимо «вернуть» 

параллели и меридианы в правильное положение. Это достигается следующим образом: 

сначала поворачиваем исходную сферу с помощью тензора R (рис. 2), а затем 

растягиваем полученный объект левым тензором растяжения V  (рис. 2). Так 

реализуется полярное разложение .VRF =  Можно поступить иначе: осуществить 

сначала растяжение, определяемое правым тензором растяжения ,U  а затем поворот с 

помощью тензора R (рис. 2). Указанные преобразования исходной сферической области 

осуществляются последовательно. Правый тензор растяжения U  также формирует 

эллипсоид той же формы, что и градиент деформации F; различие заключается лишь в 

ориентации полученного эллипсоида в пространстве. 

Отметим, что материал, деформированное состояние которого однородно по всему 

объему образца, нагружается с помощью неподвижной экспериментальной установки. 

Реализуются условия простого сдвига. Закрепленный в ней образец не совершает 

вращения как абсолютно твердое тело: его верхняя и нижняя границы остаются строго 

горизонтальными (рис. 3). Тем не менее, малые материальные области внутри образца 

испытывают локальное вращение. 



К. А. Мохирева, А. Л. Свистков 

36 

 

а 

  

б в 

Рис. 4. Геометрии малой сферической области материала а) в отсчетном 

(недеформированном) состоянии и б), в) в условиях простого сдвига. Преобразование 

точек сферической области материала происходит с помощью: б) градиента деформаций 

( )0xFx =  и в) левого тензора растяжений ( )0xVx =  

3.  Тензор скоростей деформации и тензор вихря 

Материальная производная градиента деформации по времени F  может быть 

выражена через производные главных растяжений и производные собственных векторов 

тензоров U  и V , возникающих в полярном разложении согласно формуле (1.5). С более 

подробными выкладками можно ознакомиться в работах [1–4]. Соответственно, 

комбинация 1−
FF естественным образом распадается на части, связанные с изменением 

длин (растяжений) и с вращением материальных элементов. Теперь рассмотрим 

скалярное произведение тензора kkk nn   и тензора 1−
FF : 

( ) .k

i i j

jiji

j

i
ii

i

ii

i

i
kkkkkk 








 


 =














++=  

= = ==

−
3

1

3

1

3

1

00
3

1

1
nnnnnnnnnnFFnn  (3.0) 
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Разложим тензор 1−
FF  на симметричную D  и антисимметричную W части: 

,WDFF +=−1                                                   (3.1) 

где ( ) 




 += −− T11

2

1
FFFFD   и ( ) TT11

2

1
WWFFFFW −=





 −= −− , , тогда выполняется: 

.kkkkkkk DnnFFnn == −  1                                (3.2) 

Тензор D  называется тензором скоростей деформации (первое название, 

используемое в работах [1–4]) или тензор деформации скорости (второе название, 

упоминаемое в работах [6–8]), а W – тензор вихря. Важной особенностью тензоров D  и 

W  является их независимость от выбора отсчетной конфигурации [1–3, 7].  

Пусть в отсчетный момент времени 0t  положение материальных точек континуума 

определяется радиус-вектором .0x  Определяемое в пространстве положение 

материальных точек сплошной среды будем называть отсчетной конфигурацией. В 

другой момент времени 1t  положение материальных точек континуума определяется 

радиус-вектором .1x  Считаем, что момент времени 1t  наступает после момента времени 

,t0  то есть 01 tt  . Будем рассматривать момент времени 1t  как момент, в котором 

задается новая конфигурация с помощью радиус-векторов материальных точек 

континуума .1x  Будем называть ее новой отсчетной конфигурацией. 

В текущий момент времени радиус-векторы материальных точек являются 

функциями времени t и радиус-векторов в одной из отсчетных конфигураций. При этом 

можно использовать как конфигурацию, связанную с моментом времени 0t , так и с 

моментом 1t . Должны существовать функции: ( ) ( )0011 xxxxxx ,t,,t == . 

Рассмотрим две близко расположенные точки в начальный момент времени 0t , их 

взаимное расположение определяет вектор .0x  Считаем, что текущий момент времени 

t наступает после момента времени 1t . Изменения положения в пространстве двух близко 

расположенных точек определяются градиентами деформации 0F и 1F : 

,, 00111001 xFFxFxxFx ===                                        (3.3) 

где ( ) ( ) .t,t 00110111  , , xxxFxxxF ==  Это означает, что градиент деформации, 

связывающий текущее положение точек с их положением в отсчетный момент времени  

0t , имеет вид 01FFF = . При этом градиент деформации 0F  не зависит от времени t, то 

есть его материальная производная по времени равна нулю: .00 =F  

Разность скоростей v  двух близко расположенных материальных точек 

сплошной среды может быть представлена через градиент скорости в текущей 

(актуальной) конфигурации с точностью до величин второго порядка малости:  

...,...grad 1 +=+= −
xFFxvv                                       (3.4) 

где x – расстояние между близко расположенными точками в момент времени t в 

текущей конфигурации.  

Далее будем рассматривать формулы в новой отсчетной конфигурации, 

соответствующей положению материальных точек в момент времени 1t . Обозначим 

через x  вектор, соединяющий две близкие точки деформируемой среды в момент 
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времени t, отделенной от момента времени 1t  на малый отрезок 1ttt −= . На основании 

формул (3.1), (3.3), (3.4) и определения градиента деформации имеем 

( ) ,ttt +=== −
001

1
xFFWDxFFvx                                         (3.5) 

где 0x  – вектор, соединяющий те же точки в исходной отсчетной конфигурации 

момент 0t . Применим полярное разложение к градиенту деформации 111 RVF = . 

Для вычисления тензоров скорости деформации и вихря рассмотрим выражение: 

( ) ( )( ) 1
111111

1
11

−−•
+= RVRVRVFF  .                                           (3.6) 

Устремляя 0→t , получаем значения тензоров  

.,
tt

IRIV ==
→→

1
0

1
0

limlim                                              (3.7) 

где I – единичный тензор. В предельном переходе выражение (3.6) примет вид:  

( ) 11
1

11
0

lim RVFF  +=
−•

→t
.                                             (3.8) 

С учетом формулы (3.1) и инвариантности тензоров D  и W  относительно выбора 

отсчетной конфигурации приходим к выводу, что 

( ) 1
T

11111 50 RRRWWVDD  =−==== ., .                                       (3.9) 

В формуле (3.9) учтено то, что тензор T
11RR является антисимметричным, и для малого 

интервала времени при ,t 0→  выполняется равенство .IR 1  Это означает 

антисимметричность тензора .1R  

Полученный результат объясняет причину появления названия «тензор скоростей 

деформации» у оператора .D  Связано это с тем, что он является материальной 

производной по времени от тензора ,1V  который фиксирует изменение геометрии малых 

областей сплошной среды за интервал времени ∆t. При этом изменение геометрии малых 

областей происходит в результате деформирования материала, а не его жесткого 

движения. В свою очередь, вращательное движение малых областей в данный момент 

времени характеризует тензор вихря .W  Если сплошная среда является идеальной или 

вязкой жидкостью, то к ней невозможно применить понятие деформации материала. 

Поэтому о вращательных движениях малых областей жидкости можно судить только с 

помощью тензора .W  Этот факт послужил основой для появления понятия «тензор 

вихря». 

Иллюстрация изменений малой сферической области показана на рис. 5. В 

отсчетном состоянии выбираем малую сферическую область материала. Эта область 

отмечена на рисунке буквой A. Выбор области осуществляется в момент времени 0t . С 

помощью градиента деформации 0F  рассматриваемая сфера преобразуется в эллипсоид, 

отмеченный на рисунке буквой B. Эллипсоид представляет геометрию выбранной 

области в фиксированный момент времени .t1  Последующий за ним текущий момент 

времени t  наступает далее через малый промежуток времени t . Отмеченные буквами 

C и D фигуры необходимы для иллюстрации особенностей перехода от геометрии 

выбранной области в момент времени 1t  к геометрии в текущий момент времени t . Для 

сравнения за этими фигурами серым фоном показан контур области, который был в 

момент времени 1t . 
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Переход от геометрии в момент 1t  к геометрии в момент времени t  определяет 

градиент деформации 111 RVF = . С учетом малости интервала времени t  и равенств 

(3.9) имеем с точностью до величин второго порядка малости связь: 

( )( ) ( )( ).tttttt
tt

++=++=






 +






 +=
→→

111111
0

11
0

1 limlim WIDIRIVIRRVVF 
 

Буквой C на рис. 5 показана геометрия рассматриваемой области, которая 

получается при переходе фрагмента среды из состояния B в новое состояние с помощью 

оператора t+DI . Оператор tD  определяет изменение деформации за интервал 

времени Δt. В свою очередь, буквой D показана новая геометрия, которая получается при 

переходе из состояния B в новое состояние с помощью оператора t+ WI . Оператор 

tW  определяет дополнительное вращение материала за интервал времени Δt. 

 

Рис. 5. Изменение малого сферического объема сплошной среды. Показаны иллюстрации действия 

следующих операторов: 0F  – оператор, определяющий переход материала из отсчетного 

состояния в состояние, соответствующее моменту времени 1t ; t+ DI  – оператор, 

определяющий переход в новое деформированное состояние материала за малый интервал времени 

Δt; t+ WI  – оператор, определяющий изменение положения области в результате поворота при 

переходе в новое состояние 

4. Тензор спина. Отличие от тензора вихря 

Часто в формулах механики деформируемых сред используется тензор спина 
T

R RRW = [7, 8]. Он возникает, когда вычисляется материальная производная от 

собственного вектора in  левого тензора растяжений .V  Используем для определения 

производной запись его с помощью тензора поворота R  и собственного вектора 
0
in  

правого тензора растяжений .U  Выведем соответствующую формулу для скорости 

изменения вектора in : 

( ) 000
iiii nRnRRnn  +==

•
.                                               (4.0) 

Учтем, что обратный тензор 1−
R  к тензору поворота равен транспонированному :TR   

( ) ( ) ( ) .iiiiiiii
0

R
0T00T0

nRnWnRnRRnRnRRRRnn  +=+=+==
•

                (4.1)  



К. А. Мохирева, А. Л. Свистков 

40 

Таким образом, приходим к выводу, что имеются две причины изменения 

направления собственного вектора левого тензора растяжения in . Это его вращение в 

результате поворота (слагаемое inWR  в формуле (4.1)) и изменение направления 

деформирования материала (слагаемое 
0
inR  ), которое определяется в отсчетной 

конфигурации правым тензором растяжений U . 

Важно отметить еще одну особенность. Снова рассмотрим новую отсчетную 

конфигурацию, которая определяется в момент времени 1t  с помощью радиус-векторов 

материальных точек континуума 1x . Поворот среды, который отражается с помощью 

тензора спина, можно представить последовательностью двух поворотов. Учитывается 

это формулой: ,01RRR =  где 1R  – тензор спина, учитывающий поворот малой области 

материала за интервал времени от 1t  до t; 0R  – тензор спина, учитывающий поворот 

малой области материала за интервал времени от 0t  до 1t . При этом тензор 1R  является 

функцией текущего момента времени t и радиус-вектора центра выбранной области в 

отсчетном состоянии .0x  В свою очередь, тензор 0R  является функцией момента 

времени 1t  и радиус-вектора центра выбранной области в отсчетном состоянии 0x : 

( ) ( ).,t,,t 0100011 xRRxRR ==                                                       (4.2) 

Поэтому материальная производная от тензора 0R  по времени равна нулю: .00 =R Это 

означает выполнение равенства: 

( ) ( ) ( )( ) .1
R

T
11

T
1

T
001

T
0101R WRRRRRRRRRRW ====

•                             (4.3) 

Следовательно, тензор спина ,RW  так же, как и тензор скоростей деформации D  и 

тензор вихря W , не зависит от выбора отсчетной конфигурации. В этом их отличие от 

тензоров, определяющих деформации материала. Левый V  и правый U  тензоры 

растяжений, левый B и правый C тензоры растяжений Коши–Грина [1–8] определяют 

искажение геометрии фрагментов сплошной среды относительно начального состояния.  

Однако при моделировании упругопластических и вязко-упругопластических сред 

отсчет для упругих деформаций выполняется относительно конфигурации с 

накопленными пластическими деформациями. То есть, речь идет о конфигурации, 

изменяемой во времени. В этом случае тензор поворота plR  в полярном разложении 

градиента пластических деформаций зависит от времени. Поэтому тензор пластического 

спина: 
T
plpl

pl
R RRW =  может отличаться от тензора спина RW . 

Два тензора дают информацию об особенностях вращений сплошной среды – это 

тензор вихря W  и тензор спина RW . Связь между тензора задается формулой [1–3, 7]: 

,WWW += R                                                                          (4.4) 

где в качестве удобства обозначения принимается ( ) .T1-1-

2

1
RUUUURW  −=   

Приведенное соотношение (4.4) позволило показать существенное отличие между 

тензором вихря RW  и тензором спина W . Для лучшего понимания связи между этими 

тензорными величинами следует установить, в каких случаях тензоры совпадают. 

Происходит это в условиях, когда выполняются равенства: .00
3

0
2

0
1 === nnn   Это значит, 
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что собственные векторы правого тензора растяжений U  остаются неизменными. 

Меняются только собственные значения этого тензора. Используем представление 

правого тензора растяжений через собственные векторы и собственные значения. В 

рассматриваемом случае выполняется равенство: 

.
i

iii

i

iii

i

iii

i

iii 0
3

1

00

1
3

1

00

1
3

1

00
3

1

001-1- =




















−





















=− 

=

−

=

−

==

nnnnnnnnUUUU    (4.5) 

Поэтому формула (4.4) превращается в связь .RWW =  В такой ситуации указанные 

тензоры определяют скорость вращения точек материала при жестком движении 

сплошной среды. 

Как было отмечено ранее, согласно формуле (4.4), тензор вихря W  является 

суммой двух слагаемых, имеющих разный физический смысл. Одно слагаемое отражает 

особенности жесткого вращения малых фрагментов сплошной среды (тензор RW ). 
Второе слагаемое учитывает появление вращения в результате деформирования 

материала (тензор W ). Возникает деформационное вращение в случае изменения во 

времени направлений собственных векторов 
0
3

0
2

0
1 nnn ,,  правого тензора растяжений U . 

Далее рассмотрим примеры вращательного движения малой области, выделенной 

в материале, с помощью иллюстраций. Обратимся к деформированию образца в 

условиях простого сдвига. Использованы расчеты для значения параметра  =1.5 (рис. 3, 

б) и его материальной производной по времени t =1.5. Рассматривается малая сфера, 

множество точек, поверхности которой пробегает вектор x , выходящий из центра 

сферы и имеющий длину R. Выделение сферы осуществлено в уже деформированном 

состоянии в момент времени .t1  На рис. 6 показана иллюстрация действия тензора вихря 

W  и тензора спина .RW  Из точек поверхности сферы отложены векторы s согласно 

следующим формулам. Для иллюстраций действия тензора спина RW  (рис. 6, а) и 

тензора вихря W (рис. 6, б) использованы формулы: 

.Rt,Rt  == xWsxWs R                                                         (4.6) 

Пример представления тензора вихря W  в виде суммы тензоров вращательного 

жёсткого движения (тензор RW ) и деформационного вращения (тензор W ) показан на 

рис. 6, в. Все векторы s  располагаются в плоскости, перпендикулярной второй оси, 

обозначенной на рис. 3, б. При этом, как нетрудно доказать, векторы s  всегда 

перпендикулярны векторам .x  Следует это из антисимметричности тензоров W  и 

W  и правил тензорной алгебры:  

 −== xxWxxWxWx
T ,                                      (4.7) 

то есть  −= xWxxWx . А это возможно только при условии 

.0=  xWx                                                         (4.8) 

Аналогично доказывается ортогональность и при рассмотрении случая использования 

тензора RW . 
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Рис. 6. Иллюстрация отличия тензоров 
R

W и W  в условиях простого сдвига с помощью векторов 

s , начала которых расположены на сферической поверхности. Для вычисления вектора s  

применяются формулы: а) Rt = xWs R  и б) Rt = xWs . Схематичное изображение 

каждого из тензоров, использованных для вычисления векторов (рис. в) 

 

Более подробные пояснения даются на рис. 7. В начальный момент времени 0t  

выбрана область в виде малой сферы в материале. Положение точек ее поверхности 

относительно центра сферы определяет радиус-вектор .0x  На сферу нанесены 

меридианы и параллели, чтобы фиксировать ее ориентацию в пространстве. В начальном 

состоянии положение сферы отмечено на рисунке символом A. С помощью оператора 

0R  происходит поворот векторов .0x  На рисунке это положение сферы, отмеченное 

символом B. Дальнейший поворот за малый интервал времени Δt осуществляется 

оператором .t+ RWI  Все указанные повороты иллюстрируют последовательность 

формирования тензора R , который входит в полярное разложение градиента 

деформации F , то есть ( ) .t 0R RWIR +=  
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Рис. 7. Иллюстрация поворотов малой сферической области материала в условиях простого 

сдвига. При жестком движении осуществляется переход от состояния A к состоянию B и далее к 

C. Для иллюстрации вихревого вращения необходимо использовать другую сферу, которая 
выделяется в уже деформированном материале (состояние D). Операторы, которые были 

использованы для вычисления векторов, подписаны около соответствующих изображений. 

Подробности в тексте 

Для иллюстрации действия оператора вихря W  нужно использовать другую 

сферу. Она выделяется в уже деформированном материале в момент времени 1t . Это 

состояние отмечено на рисунке символом D. Чтобы стало понятно, что мы используем 

другую область, на ней нанесены другие параллели и меридианы. Радиус-вектор, 

определяющий поверхность сферы, обозначен символом x . Иллюстрация векторов, 

характеризующих скорости вращений, представлена набором стрелок. Для вычисления 

этих векторов использованы формулы, приведенные рядом с соответствующими 

изображениями. 

Рассмотренная задача о простом сдвиге и приведенные иллюстрации могут 

служить полезным дополнением к формулам при объяснении физического смысла 

тензорных величин, используемых в механике сплошной среды. 

Выводы 

В настоящей статье рассмотрена классическая задача простого сдвига – одно из 

ключевых напряженно-деформированных состояний, позволяющее наглядно 

продемонстрировать особенности поведения сплошной среды при конечных 

деформациях. Предложено пользоваться представлениями о тензорах, как об операторах 

(операторная школа тензорного исчисления) и раскрывать физический смысл тензоров 

на примерах преобразования малой сферической области материала, а также с помощью 

специально выбранных векторов на ее поверхности. Приведены примеры действия 

тензоров градиента деформации, поворота и растяжения. Компьютерные иллюстрации 

наглядно показывают интересное поведение материала. Испытательная установка стоит 

неподвижно. Образец деформируется без поворотов. Но все области материала образца 

испытывают вращение как абсолютно твердое тело. 

При рассмотрении на примере процесса вращения малых областей материала в 

условиях простого сдвига выясняется физический смысл понятий «тензор скоростей 

деформации» и «тензор вихря». Компьютерные изображения позволяют 

продемонстрировать отличие тензора вихря от тензора спина. Тензор вихря указывает на 
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сумму скоростей вращения как абсолютно твердого тела и вращения, вызванного 

деформациями. Приведенные в статье иллюстрации представляют интерес для 

исследователей, изучающих нелинейную механику материалов. Их можно эффективно 

использовать в учебном процессе для наглядного объяснения и лучшего понимания 

задач математического моделирования поведения деформируемых сред. 
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разрушения образца от коэффициента жесткости  

напряженного состояния у вершины трещины 
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Яков Михайлович Андреев3, Евгений Саввич Лукин4, Семен Осипович Семенов5 
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Аннотация. В работе предложен алгоритм расчета распределения коэффициента 

жесткости вдоль фронта трещины. В работе представлен междисциплинарный под-

ход к анализу процессов разрушения, сочетающий расчетные методы механики раз-

рушения с традиционным материаловедческим анализом микроструктуры. Предло-

жена новая методика оценки склонности материала к хрупкому или вязкому разру-

шению, основанная на введении и анализе коэффициента жесткости напряженного 

состояния, распределенного вдоль фронта трещины. Разработан алгоритм числен-

ного расчета данного параметра, что позволило установить его взаимосвязь с T-

напряжениями и радиусом зоны пластичности. Установлено, что при малом радиусе 

зоны пластичности и около-нулевых значениях T-напряжений наблюдается повыше-

ние склонности к хрупкому разрушению, в то время как увеличенные значения этих 

параметров способствуют формированию «мягкого» напряженного состояния и пе-

реходу к вязкому характеру разрушения. Полученные результаты позволяют воспол-

нить существующий методический разрыв между фрактографическим анализом и 

количественными методами механики разрушения и могут быть использованы при 

прогнозировании характера разрушения конструкционных материалов. 

Ключевые слова: стеснение деформации; коэффициент жесткости напряженного 

состояния; Т-напряжения; напряженно-деформированное состояние; коэффициент 

интенсивности напряжений. 

 

Для цитирования: Прокопьев Л. А., Максимова Е. М., Андреев Я. М., Лукин Е. С., Семе-

нов С. О. Моделирование зависимости характера разрушения образца от коэффициента жестко-

 

 © 2025 Прокопьев Л. А., Максимова Е. М., Андреев Я. М., Лукин Е. С., Семенов С. О. 

Лицензировано по CC BY 4.0. Чтобы ознакомиться с условиями этой лицензии, перейдите по ссылке 

https://creativecommons.org/licenses/by/4.0/  



Моделирование зависимости характера разрушения образца… 

47 

сти напряженного состояния у вершины трещины // Вестник Пермского университета. Матема-

тика. Механика. Информатика. 2025. № 4(71). С. 46–59. DOI: 10.17072/1993-0550-2025-4-46-59. 
https://elibrary.ru/zyobkk. 

Статья поступила в редакцию 30.09.2025; одобрена после рецензирования 28.10.2025; принята 

к публикации 08.12.2025. 

Research article 

Modeling of the Fracture Behavior Sample  

Dependence on the Stress State Stiffness Coefficient  

at the Crack Tip 

Leonid A. Prokopyev1, Ekaterina M. Maksimova2, Yakov M. Andreev3,  

Evgeny S. Lukin4, Semen O. Semenov5 

1,2,3,4,5Federal Research Center "Yakut Scientific Center SB RAS", Yakutsk, Russia 
1l.prokopyev@yandex.ru 
2maksimova_em85@mail.ru 
3yakovmich@yandex.ru 
4lukines@iptpn.ysn.ru 
5semens1993@mail.ru 

Abstract. This paper presents an interdisciplinary approach to fracture analysis, combining 

computational methods of fracture mechanics with traditional materials science analysis of 

microstructure. A new method for assessing a material's susceptibility to brittle or ductile 

fracture is proposed, based on the introduction and analysis of a stress stiffness coefficient 

distributed along the crack front. An algorithm for numerically calculating this parameter 

has been developed, which enables establishing its relationship with T-stresses and the ra-

dius of the plastic zone. It has been found that with a small plastic zone radius and near-

zero T-stresses, there is an increased susceptibility to brittle fracture, whereas higher values 

of these parameters lead to the formation of a "softer" stress state and a transition to a 

ductile fracture mode. The obtained results help bridge the existing methodological gap 

between fractographic analysis and quantitative methods of fracture mechanics and can be 

utilized to predict the fracture behavior of structural materials. 

Keywords: constraint effect; stress triaxiality; T-stress; stress-strain state; stress intensity 

factor. 

For citation: Prokopyev, L. A., Maksimova, E. M., Andreev, Ya. M., Lukin, E. S. and Semenov, S. O. 

(2025) " Modeling of the Fracture Behavior Sample Dependence on the Stress State Stiffness Coefficient 

at the Crack Tip", Bulletin of Perm University. Mathematics. Mechanics. Computer Science, no 4(71), 

pp. 46−59, DOI: 10.17072/1993-0550-2025-4-46-59, https://elibrary.ru/zyobkk. 

The article was submitted 30.09.2025; approved after reviewing 28.10.2025; accepted for publication 

08.12.2025. 

 

Введение 

Механика разрушения конструкционных материалов прошла значительный путь 

развития – от классических энергетических концепций к современным численным 

моделям, учитывающим сложное деформированное состояние в окрестности дефектов. 

Развитие механики разрушения как самостоятельной научной дисциплины нача-

лось в середине XX века с работ, направленных на описание критических условий роста 

трещин в твердых телах. Одним из основополагающих этапов стало формулирование 

принципов линейной механики разрушения, в рамках которой были введены такие клю-

чевые параметры, как энергетический критерий Гриффитса [1], коэффициент интенсив-
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ности напряжений K [2]. Применение механики разрушения вошло в инженерную прак-

тику оценок трещиностойкости объекта под нагрузкой. Развитие нелинейной механики 

разрушения было основано на применении J-интеграла. В дальнейшем развитие полу-

чила нелинейная механика разрушения, включающая J-интеграл c целью исследования 

свойств концентрации пластических деформаций в окрестности вершины трещины [3, 4] 

и концепцию стеснения деформации, существенно влияющую на устойчивость матери-

ала к трещине [3]. 

Важным направлением в изучении предельных состояний материалов является раз-

работка критериев разрушения, учитывающих жесткость напряженно-деформирован-

ного состояния. При этом для описания как хрупкого, так и вязкого разрушения эффек-

тивно используются критерии на основе напряжений. Хрупкое разрушение традиционно 

связывают с достижением критического нормального напряжения, в то время как вязкое 

(пластическое) разрушение, включающее стадию значительной пластической деформа-

ции, также может быть адекватно описано критерием на основе напряжений [5–7]. Это 

обусловлено тем, что дислокационные процессы, происходящие в зоне предразрушения, 

предшествующие квазихрупкому разрушению, зависят от локального напряженного со-

стояния, в частности, от уровня гидростатического напряжения и интенсивности каса-

тельных напряжений. 

Однако с течением времени стало очевидно, что однопараметрические модели не 

всегда адекватно отражают реальное поведение материалов, особенно при сложных схе-

мах нагружения и геометрии трещины. Это стимулировало развитие двухпараметриче-

ских подходов, учитывающих помимо K или J, также несингулярные компоненты напря-

женного состояния, в частности T-напряжение и параметры трехосного стеснения, такие 

как Q-параметр, параметр трехосности h [8-11].   

На современном этапе активно развиваются направления, связанные с анализом 

пространственного распределения напряженного состояния вблизи фронта трещины, 

особенно в трехмерной постановке. В этом контексте особый интерес представляет ко-

эффициент жесткости напряженного состояния, отражающий локальную реакцию мате-

риала на внешние воздействия и зависящий от параметров НДС.  

Коэффициент жесткости напряженного состояния П у вершины трещины представ-

ляет собой важную характеристику, отражающую соотношение между компонентами 

напряжений и определяющую тип локального деформирования – от плоского напряжен-

ного состояния до объемного. Исследования показывают, что распределение коэффици-

ента жесткости вдоль фронта трещины может существенно влиять на характер разруше-

ния – от хрупкого до вязкого. В работе [12] показано, что уровень локальной триакси-

альности напряжений (например, через T-напряжение, Q-параметр и другие характери-

стики) определяет, насколько материал склонен к хрупкому разрушению при наличии 

трещины.  

Установлено, что при высоком стеснении (например, в толстых телах или при би-

аксиальном нагружении) снижается способность материала к пластической релаксации, 

и разрушение происходит более хрупко [13, 14]. 

Современные исследования демонстрируют перспективность использования дан-

ного параметра для описания вязко-хрупкого перехода [15–17]. 

Таким образом, изучение влияния коэффициента жесткости напряженного состоя-

ния на характер разрушения представляет собой актуальное научное направление, спо-

собствующее более точному описанию предельных состояний и надежности конструк-

ционных материалов. Это особенно важно в контексте проектирования элементов, рабо-

тающих в условиях сложного нагружения, где локальное поведение материала может 

существенно отличаться от среднестатистических характеристик. 
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Несмотря на значительное количество исследований, направленных на изучение 

влияния коэффициента интенсивности напряжений, J-интеграла и других параметров, 

вопрос о роли жесткости НДС в формировании траектории, скорости и формы зоны раз-

рушения остается недостаточно раскрытым.  

Однако, несмотря на значительный теоретический прогресс, остается недостаточно 

изученным количественное влияние схемы нагружения на распределение параметра P в 

окрестности вершины трещины и его связь с критическими условиями хрупкого разру-

шения при низких температурах.  

Актуальность данной работы также обусловлена необходимостью более глубокого 

понимания взаимосвязи между локальными механическими условиями и макроскопиче-

ским сценарием разрушения, что имеет большое значение при проектировании конструк-

ций, работающих в условиях сложного нагружения, в том числе динамического, цикли-

ческого и ударного характера. 

Таким образом, целью настоящей работы является разработка алгоритма оценки 

распределения коэффициента жесткости вдоль фронта трещины и в формировании 

подхода к прогнозированию характера разрушения материала на основе параметров 

напряженного состояния, включая радиус зоны пластичности и значения Т-напряжений. 

Критерий вязко-хрупкого перехода на основе распределения коэффициента 

жесткости  

Предлагаемый в настоящей работе критерий вязко-хрупкого перехода основан на 

анализе распределения коэффициента жесткости П вдоль фронта трещины. При этом 

расчет проводится в точке, соответствующей границе зоны пластичности вдоль линии 

продолжения трещины. Таким образом, формулируется следующая гипотеза: высокие 

значения коэффициента жесткости напряженного состояния П в зоне предразрушения 

вблизи границы пластической области обусловливают преобладание механизма хрупкого 

разрушения, характеризующегося зарождением и развитием микродефектов с образова-

нием микротрещин. В данном случае распространение магистральной трещины проис-

ходит посредством слияния предсуществующих микротрещин. Напротив, при низких 

значениях параметра П в указанной зоне доминируют пластические механизмы дефор-

мирования, связанные с генерацией и движением дислокаций. Это приводит к реализа-

ции вязкого механизма распространения трещины, сопровождающегося образованием 

зоны пластичности у вершины трещины. Данная гипотеза основана на положении о том, 

что параметр жесткости напряженного состояния П является ключевым фактором, опре-

деляющим конкуренцию между хрупкими и вязкими механизмами разрушения в зоне 

предразрушения. Высокие значения П благоприятствуют локализации деформации и ре-

ализации механизмов хрупкого отрыва, в то время как низкие значения П способствуют 

активации дислокационных механизмов и развитию пластической деформации. 

Для описания жесткости схемы напряженного состояния применяют различные по-

казатели. Один из таких параметров, коэффициент жесткости П, является безразмерной 

величиной, характеризующей "трехосность" напряженного состояния. Его физическая 

интерпретация может быть дана через анализ условий пластичности. Согласно критерию 

Мизеса, пластическое течение начинается при достижении интенсивностью напряжений 

некоторого критического значения. Однако наличие гидростатической компоненты су-

щественно влияет на процесс разрушения. 

 В работе [18] приводится коэффициент жесткости П, описываемый формулой (1): 

П =
𝜎1+𝜎2+𝜎3

𝜎𝑖
 ,     (1) 
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где 𝜎1, 𝜎2, 𝜎3 – компоненты главных напряжений, 𝜎𝑖 – интенсивность напряженного со-

стояния (2): 

𝜎𝑖 = √
(𝜎1−𝜎2)2

2
+
(𝜎2−𝜎3)2

2
+
(𝜎3−𝜎1)2

2
 .    (2) 

В механике разрушения точное описание полей напряжений в окрестности вер-

шины трещины позволяет представить поля напряжений в виде ряда, где каждый после-

дующий член уточняет описание на больших расстояниях от вершины трещины. Для 

применения формулы (1) необходимо выразить компоненты тензора напряжений и, соот-

ветственно, главные напряжения через параметры этого разложения. Считается [19, 20], 

что первые два члена ряда в большинстве задач исследования поля напряжений у вер-

шины трещины достаточны.  Поле напряжений в окрестности вершины трещины с уче-

том двух членов ряда в случае трещины нормального отрыва описывается уравнени-

ями (3).  

{
 
 

 
 𝜎𝑥 =

𝐾1

√2𝜋𝑟
cos

𝜃

2
(1 − sin

𝜃

2
sin

3𝜃

2
) + 𝑇𝑥

𝜎𝑦 =
𝐾1

√2𝜋𝑟
cos

𝜃

2
(1 + sin

𝜃

2
sin

3𝜃

2
)

𝜏𝑥𝑦 =
𝐾1

√2𝜋𝑟
sin

𝜃

2
cos

𝜃

2
cos

3𝜃

2

,               (3) 

где 𝑇𝑥 – Т-напряжения, являющиеся первым несингулярным членом разложения [21].  

Для анализа коэффициента жесткости Π на линии продолжения трещины 𝜃 = 0 

уравнения (3) упрощаются: 

{
 

 𝜎𝑥 =
𝐾1

√2𝜋𝑟
+ 𝑇𝑥

𝜎𝑦 =
𝐾1

√2𝜋𝑟

𝜏𝑥𝑦 = 0

.     (4) 

  Компонента 𝜎𝑧  в зависимости от типа напряженного состояния (для плоского 

напряженного состояния, ПНС; и для плоского деформированного состояния, ПДС) бу-

дет иметь вид: 

{
𝜎𝑧 = 0 для ПНС

𝜎𝑧 = 𝜇(𝜎𝑥 + 𝜎𝑦) = 𝜇 (
2𝐾1

√2𝜋𝑟
+ 𝑇𝑥)  для ПДС

  .   (5) 

Поскольку, согласно вышеописанной гипотезе, коэффициент жесткости необхо-

димо рассчитать на границе зоны пластичности, перепишем уравнения (4) в терминах 

главных напряжений на расстоянии 𝑟𝑝 . На линии продолжения трещины (𝜃 = 0 ) каса-

тельные напряжения равны нулю, следовательно, компоненты 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧   совпадают с 

главными напряжениями 𝜎1, 𝜎2, 𝜎3. 

В случае положительных Т-напряжений получаем: 

{
 
 

 
 𝜎1 =

𝐾1

√2𝜋𝑟𝑝
+ 𝑇𝑥

𝜎2 =
𝐾1

√2𝜋𝑟𝑝

𝜎3 = 𝜇 (
2𝐾1

√2𝜋𝑟𝑝
+ 𝑇𝑥)  для ПДС, и 𝜎3 = 0 для ПНС

 . (6) 
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Если уравнения (6) подставить в (1) и упростить, используя следующую замену: 

𝑇∗ = 𝑇𝑥√2𝜋𝑟𝑝 ,      (7) 

получим следующие выражения для коэффициента жесткости:  

Для случая ПНС: 

П =
2𝐾1+𝑇

∗

√𝐾1
2+𝐾1𝑇∗+𝑇∗

2
 .     (8) 

Для случая ПДС: 

П =
1+𝜇

√1+𝜇(𝜇−1)−
3𝐾1(𝐾1+𝑇

∗)

(2𝐾1+𝑇
∗)2

 .     (9) 

Результаты расчетов по уравнениям (8) и (9) представлены в виде трехмерных по-

верхностей (рис. 1) и в виде полей коэффициента жесткости на контурных диаграммах 

(рис. 2). На рисунках показаны случаи плоского напряженного состояния (слева), описы-

ваемые уравнением (8), и плоской деформации (справа), описываемые уравнением (9). 

 

Рис. 1. Трехмерное представление зависимости коэффициента жесткости Π от параметров 

напряженного состояния: слева – расчет для ПНС; справа – для ПДС 

 

Рис. 2. Поле коэффициента жесткости напряженного состояния: слева – для ПНС,  

справа – для ПДС 
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Из рисунков 1 и 2 видно, что напряженное состояние с максимальными значениями 

коэффициента жесткости соответствуют линии 𝑇∗ = 0, особенно для случая плоской де-

формации. Это может означать, что малый радиус зоны пластичности с одновременно 

около-нулевыми значениями Т-напряжений, действующих в условиях плоской деформа-

ции, может существенно повысить склонность материала хрупкому разрушению. И, 

напротив, больший радиус зоны пластичности и большие значения Т-напряжений, осо-

бенно в сторону отрицательных значений, обуславливают "мягкое" напряженное состоя-

ние, при котором наиболее вероятно вязкое разрушение.  

В уравнениях (5) и (6) одним из переменных является радиус зоны пластичности 

𝑟𝑝. Размеры пластической зоны на линии продолжения трещины (𝜃 = 0) по условиям те-

кучести Мизеса представлены в следующем виде [22]:  

Для плоского напряженного состояния:  

𝑟𝑝 =
𝐾1
2

2𝜋𝜎𝑇
2 .      (10) 

Для случая плоской деформации: 

𝑟𝑝 =
𝐾1
2

18𝜋𝜎𝑇
2 .      (11) 

Подставив выражения (10) и (11) в уравнения (6), (7), и в конечном итоге в (1), 

получим возможность численного расчета коэффициента жесткости П на конкретном 

примере. В качестве примера выбран образец на трехточечный изгиб. Реализация 

расчетов П выполнена с помощью методов компьютерного программирования.  

Коэффициенты интенсивности напряжений K₁ и T-напряжения рассчитывались на 

основе табличных данных для схемы трехточечного изгиба, представленной на рис. 3, 

полученных методом применения функции Грина [23].  

 

 

Рис. 3. Вид, размеры и схема разбиения сечения образца на расчетные элементы  
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Как видно из рис. 3, начало координат находится на вершине начальной трещины 

длиной 𝑙0. Ширина образца по оси z – B, расстояние между упорами – 2L, глубина по оси 

x – W. Сечение образца по плоскости трещины A-A показано справа. Выполнено разби-

ение сечения на расчетную сетку с Nx элементами по оси x и Nz элементами по оси z. 

Алгоритм компьютерного расчета коэффициента жесткости напряженного состояния 

представлен на рис. 4.  

 

Рис. 4. Алгоритм расчета коэффициента жесткости напряженного состояния 

Основной расчет проводится в двойном цикле по i (счетчик, привязанный к коор-

динатам по оси z) и j (счетчик, привязанный к координатам по оси x – длине трещины. 

Таким образом, последовательно рассчитывается значение П по всему сечению модели 

образца. На каждый элемент (i, j) в расчет берутся соответствующие значения длины тре-

щины, коэффициента интенсивности напряжений, Т-напряжений, радиуса зоны пластич-

ности, которые, в свою очередь, автоматически рассчитываются в виде выходных пара-

метров соответствующих функций программы. Температура, как один из входных пара-

метров в данном расчете, является параметром предела текучести материала, который 
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увеличивается при понижении температуры, и должна быть задана как функция про-

граммы в том или ином виде. Далее предел текучести напрямую влияет на размер зоны 

пластичности и, например, чем меньше радиус зоны пластичности, тем больше станут 

значения коэффициента жесткости напряженного состояния. 

Обсуждение результатов 

На рисунках 5 и 6 представлены результаты расчетов значений коэффициента жест-

кости напряженного состояния моделей образцов с толщинами 10 мм и 3 мм, соответ-

ственно [24]. На правой части показаны изломы образцов, испытанных на ударную вяз-

кость, с долей вязкой составляющей 20% и 40%.  

 

Рис. 5. Результаты расчетов коэффициента жесткости напряженного состояния для модели 

образца, толщиной 10мм. Верхние – 20% вязкой составляющей излома, нижние – 40% вязкой 

составляющей излома 

Следует отметить визуальное соответствие между результатами расчетного моде-

лирования и экспериментальных данных. В частности, наблюдается сходство между про-

гнозируемым распределением вязких и хрупких зон в расчетной модели и фактической 

морфологией излома: области, характеризующиеся вязким разрушением в периферий-

ных зонах и зоне окончательного долома, идентифицированные в ходе моделирования, 

согласуются с экспериментально наблюдаемыми участками вязкого разрушения. 

 

Рис. 6. Результаты расчетов коэффициента жесткости напряженного состояния для образца 

толщиной 3 мм 
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Для образца толщиной 3 мм при идентичных условиях нагружения моделирование 

проводилось для материала с тремя разными значениями предела текучести: базовым 

значением σ_T, а также со сниженными значениями 0.75σ_T и 0.5σ_T (рис. 6). Во всех 

случаях формируется "мягкое" напряженное состояние. Результаты соответствуют из-

вестной закономерности, согласно которой для образцов малой толщины характерно пре-

обладание механизмов вязкого разрушения, что обусловлено реализацией условий плос-

кого напряженного состояния. 

В контексте оценки ударной вязкости следует подчеркнуть определяющую роль 

пластической составляющей в общем балансе энергии разрушения. Учитывая, что про-

цесс распространения трещины сопровождается непрерывной эволюцией параметров 

механики разрушения и характеристик пластических зон, а конечный результат традици-

онно характеризуется единственным параметром (KCU или KCV), представляется мето-

дологически обоснованным внедрение более совершенных подходов к оценке сопротив-

ления хрупкому разрушению. Перспективным направлением представляется разработка 

методик, основанных на анализе коэффициента жесткости напряженного состояния, ко-

торый обладает более высокой чувствительностью к особенностям кинетики разрушения 

и позволяет осуществлять дифференцированную оценку сопротивления материала рас-

пространению трещины на различных стадиях процесса разрушения.  

Традиционные материаловедческие исследования, основанные на фрактографиче-

ском анализе изломов, как правило, не учитывают расчетные методы механики разруше-

ния. Настоящее исследование предлагает междисциплинарный подход, интегрирующий 

количественные параметры механики разрушения, в частности коэффициент жесткости 

напряженного состояния, с качественным анализом микроструктуры. Разработанный 

критерий вязко-хрупкого перехода восполняет существующий методический разрыв и 

создает основу для комплексного анализа процессов разрушения, объединяющего мате-

риаловедческие и механико-математические методы исследования. 

 

Заключение 

Разработан алгоритм расчета распределения коэффициента жесткости вдоль 

фронта трещины.  

Предложен способ прогнозирования характера разрушения материала, основанный 

на анализе распределения коэффициента жесткости напряженного состояния P вдоль 

фронта трещины.  

Показано, что малый радиус зоны пластичности с одновременно около-нулевыми 

значениями Т-напряжений, действующих в условиях плоской деформации, может суще-

ственно повысить склонность материала хрупкому разрушению; и, напротив, больший 

радиус зоны пластичности и большие значения Т-напряжений обуславливают "мягкое" 

напряженное состояние, при котором наиболее вероятно вязкое разрушение. 
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Аннотация. Тепловое отверждение полимеров представляет интерес для создания 

надувных космических конструкций на орбите Земли. Исследуется тепловое состоя-

ние каркаса, представленного набором полых слоистых цилиндрических структур, в 

условиях солнечно-синхронной орбиты. Приведен упрощенный вариант моделирова-

ния собственного и отраженного излучения Земли. Оптические характеристики внеш-

него покрытия оказывают большое влияние на итоговые температуры. Для достиже-

ния нужных температур используется продольная полоса поглощающего солнечный 

свет материала (меди). Построена зависимость стационарных температур от вели-

чины этой полосы и угла отклонения направления падения солнечных лучей от плос-

кости осевого сечения элемента каркаса.  
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Abstract. Thermally curing polymer composites is an alternative method to produce inflat-

able structures in Earth orbit. This work studies thermal balance for framework of the orbital 

radar sounding probe in sun-synchronous orbit. The framework is composed of hollow lay-

ered cylindrical structures. Simplified model of Earth’s infrared and albedo radiation is de-

scribed. The outer coating’s absorbing and reflective properties have profound value in re-

sulting thermal balance. As a method of reaching desired temperatures, solar radiation ab-

sorbing stripe (made of copper foil) is used. By varying the size of said stripe for every 

cylindrical structure, the amount of absorbed solar flux can be changed. The resulting steady 

state temperatures are plotted for various stripe sizes and solar flux angles of incidence. 
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Введение 

В новом тысячелетии человечество продолжает активно осваивать космическое 

пространство, совершенствуя технологии изготовления космических аппаратов (КА). На 

различных орбитах Земли на 2025 год уже находится более девяти тысяч спутников, 

большинство из которых обеспечивают телекоммуникационную связь, и их количество 

увеличивается с каждым годом. Исследователи и на текущий момент продолжают искать 

более практичные способы вывода на орбиту, обеспечения работоспособности спутни-

ков, уменьшения их массы, повышения надежности. Появление новых материалов, в том 

числе композитных, во многом способствует исследованиям в этой области. 

Идея использования в космосе надувных крупногабаритных конструкций из ком-

позиционного материала не теряет актуальности [1–3]. Такие конструкции обладают ря-

дом преимуществ перед аналогами, созданными из металла [4, 5], в частности, они 

имеют высокий коэффициент упаковки и уменьшенный вес, обладают более высокой 

надежностью на этапе приведения складных конструкций в рабочее состояние. Все ак-

тивнее в этой области исследований продолжает развиваться направление использования 

препрегов как основного строительного материала оболочки надувного изделия. 

В последние годы изучается технология отверждения на орбите полимерных ком-

позитных материалов. Авторами работ [6, 7] предложена технология отверждения 
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препрегов в лабораторных условиях, которые моделируют условия открытого космоса. В 

работе [8] рассматривается возможность создания крупногабаритной конструкции с от-

верждаемым каркасом из композиционного материала при поддержании внутреннего 

давления. Главным преимуществом надувной конструкции является возможность ком-

пактной упаковки большого объема, так как пропитанная связующим ткань (препрег) до 

отверждения является гибкой. После доставки в космос конструкция из этой ткани раз-

дувается, принимая требуемую форму, затем связующее полимеризуется, образуя жест-

кую конструкцию из композитного материала.  

В качестве связующего обычно применяются органические эпоксидные, феноль-

ные, полиэфирные смолы и их комбинации [9]. В матрицу, для улучшения механических 

свойств, добавляют различные добавки (минеральные порошки, углеродные нанотрубки 

и т.п.). В качестве армирования могут использоваться нити или ткани на основе углерод-

ных, стеклянных, базальтовых или органических волокон [9, 11]. В качестве связующего 

в данной работе используется цианэфирная смола, которая разработана и изготавлива-

ется Всероссийским научно-исследовательским институтом авиационных материалов 

Национального исследовательского центра «Курчатовский институт» (ВИАМ) – ВСТ 

1208 [12,13]. Это связующее однокомпонентное, его химические составляющие заранее 

смешаны, но не вступают в активную реакцию без определенных условий. В таком слу-

чае пропитка ткани может быть проведена на Земле, и активный процесс отверждения на 

орбите протекает при нагреве смеси до определенной температуры. Такой способ отвер-

ждения позволяет избежать набора проблем, например, обеспечение равномерного сме-

шения компонентов и пропитки ткани на орбите, характерных для двухкомпонентных 

связующих, в которых химические составляющие физически разделены, и химическая 

реакция между ними начинается сразу при их смешении. Выбранное связующее обладает 

рядом свойств, необходимых при составлении планируемого каркаса – низкое испарение 

в ходе реакции и возможность длительного (до 1 года) хранения [13].  

В качестве исследуемой модели использовался описанный в статье [14] каркас ре-

флектора (рис. 5, a). Радиолокационное зондирование Земли является одним из перспек-

тивных направлений, использующих орбитальные спутники Земли. Об основных прин-

ципах и истории развития радиолокационного зондирования Земли можно найти инфор-

мацию в работах [15,16]. Таким образом, рассматривается задача о тепловом балансе эле-

ментов конструкции космического аппарата для оценки возможности достижения требу-

емых температур. С использованием описанных позже допущений, основанных на рабо-

тах [17–21], формулируется приближение теплового излучения Земли. Существует до-

статочно много источников, в которых рассматриваются подобные задачи [21–30]. 

 

1. Постановка задачи 

Постановка задачи схожа с рассмотренной ранее в работе [31]. Элементы каркаса 

моделируются как вытянутая полая цилиндрическая конструкция, стенка которой состав-

лена из нескольких слоев. Используемые свойства материалов приведены в табл. 1 [31, 

32]. Препрег представляет собой ткань сатинового плетения, пропитанную связующим, 

его свойства определены численным методом с помощью Ansys Material Designer. 

Таблица 1. Свойства материалов 

Материал Алюминиевая 

фольга 

Медная 

фольга 

Препрег Силикон 

Плотность, кг/м3 2700 8900 2200 1230 
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Окончание табл.1. 

Материал Алюминиевая 

фольга 

Медная 

фольга 

Препрег Силикон 

Теплопроводность, Вт/(м К) 235 390 0.8 0.2 

Теплоемкость 𝑘 Дж/(кг К) 920 400 923 0.84 

Коэфф-т отражения 𝐴𝑟𝑆 0.85 0.6 0.3 0.3 

Коэфф-т излучения 𝜀 = 𝐴𝑎𝐸  0.04 0.02 0.64 0.85 

 

На рисунке 1 схематично изображены внешние тепловые потоки (длины векторов 

на рисунке не соответствуют модулям величин) и введены следующие обозначения: 𝜑 – 

угол цилиндрической системы координат;  𝑸𝑆 −  вектор падающего теплового потока 

Солнца, 𝑄𝑆 =  1367 Вт/м
2 ; 𝑸𝐸  – вектор падающего теплового потока Земли, 𝑄𝐸 =

𝑄𝐸(𝜑) − зависимость приведена ниже; 𝑸𝑅𝑎𝑑 – вектор теплового потока, испускаемый по-

верхностью цилиндра за счет излучения в окружающий космос (зависит от локальной 

температуры в точке).  

Для удобного учета направления падения излучения Солнца определим единичный 

вектор 𝝉𝑆 и разложим его на две составляющие: 𝝉𝑆 = 𝝉𝑆𝑛 + 𝝉𝑆𝑡, такие что 𝝉𝑆𝑛 параллелен 

плоскости осевого сечения элемента конструкции, а 𝝉𝑆𝑡 перпендикулярен этой плоско-

сти. Также определим вектор 𝐧 – единичную внешнюю нормаль к поверхности. Таким 

образом 𝑸𝑆 = 𝑄𝑆𝝉𝑆 , 𝑸𝑅𝑎𝑑 = 𝑄𝑅𝑎𝑑(𝜑)𝐧 , 𝑸𝐸 = 𝑄𝐸(𝜑)(−𝐧).  Для представления результа-

тов вводится цилиндрическая система координат с углом 𝜑, изображенная на рис. 2. 

 

 

Рис. 1. Схема тепловых потоков на внешней границе 
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Рис. 2. Положение космического аппарата на солнечно-синхронной орбите и вид 

диффузного излучения Земли 

На рисунке 3 показано в масштабе положение космического аппарата на орбите вы-

сотой 400 км. В работе [31] излучение Земли моделировалось как параллельно-направ-

ленный поток света, что подразумевает малость и удаленность источника света от при-

емника.  

 
Рис. 3. Положение космического аппарата на орбите высотой 400 км, с сохранением 

масштабных отношений 

 

Как видно из рис. 3, Земля по сравнению с космическим аппаратом, несмотря на 

большую высоту орбиты, не может быть приближена материальной точкой, поэтому из-

лучение Земли будет определяться, исходя из нескольких допущений. Во-первых, Земля 

– сферическое тело, которое излучает собственное тепло со средней мощностью 341 

Вт/м2. Это излучение диффузно, причем локальными отклонениями (которые могут быть 
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связаны с разницами температур, облачностью, типом земного покрова или океана и др. 

причинами) пренебрегаем, считая интенсивность излучения равномерной по всей по-

верхности (рис. 2). Во-вторых, помимо собственного теплового излучения, от Земли ис-

ходит поток отраженного солнечного излучения. Считается, что этот поток также распро-

страняется диффузно, поэтому по форме зависимости собственного теплового и отра-

женного солнечного излучения совпадают, а величины соотносятся как 
𝑞𝛼

𝛼𝑄𝑆
:
𝑞𝐸

𝑄𝐸
≅ cos 𝜃 

[19]. В-третьих, альбедо Земли определяется по таблицам из сборника [21], с учетом по-

правки, связанной с большим наклонением орбиты. Эффективные коэффициенты погло-

щения собственного излучения Земли 𝐴𝑎𝐸   и отраженного солнечного излучения 𝐴𝑎𝑆 раз-

личны и приведены выше. 

Определив 𝜆 как угол между направлением к центру Земли и внешней нормалью 

малого элемента космического аппарата, получаем зависимость мощности излучения 

Земли (собственного и отраженного солнечного), поглощаемой этим малым элементом, 

от 𝜆. На рисунке 4 приведены два графика – собственно описанная зависимость погло-

щаемого теплового потока (красным) и используемое при расчете численное приближе-

ние полиномом 4-й степени (зеленым).  

 

 
 

Рис. 4. Зависимость теплового потока Земли, поглощаемого малым плоским элементом 

границы космического аппарата, от угла между направлением к центру Земли и нормалью 

этого плоского элемента (красным). Используемое численное приближение (зеленым) 

 

Приведем формулы, проиллюстрированные на графике на рис. 4. Подробно их вы-

вод описан в работе [17], обобщения для других случаев можно найти в работе [17].  

{
 
 
 
 
 

 
 
 
 
 

𝑄𝐸𝑎 = 𝑄𝑇𝑜𝑡
cos  𝜆
𝐻2

, 𝜆 + 𝜑𝑚 <
𝜋
2

𝑄𝐸𝑎 = 𝑄𝑇𝑜𝑡 [
𝜋
4 −

1
2 arcsin [

(𝐻2 − 1)
1
2

𝐻 sin 𝜆
] +

+
1
2𝐻2

{cos 𝜆 arccos [−(𝐻2 − 1)
1
2

1
tan 𝜆

] − (𝐻2 − 1)
1
2[1 − 𝐻2 cos2 𝜆]

1
2}] ,

𝜆 + 𝜑𝑚 >
𝜋
2

 

𝑄𝑇𝑜𝑡 = 𝑄𝐸  𝐴𝑎𝐸 + 𝑄𝑆 𝐴𝑎𝑆  𝛼 cos 𝜃, 
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𝐻 =
𝑅𝑠𝑎𝑡
𝑅𝐸

,  𝜑𝑚 = arcsin
1

𝐻
. 

Стоит отметить, что полученное распределение зависит от оптических свойств ма-

териала внешней границы (эффективных коэффициентов поглощения 𝐴𝑎𝐸 , 𝐴𝑎𝑆), безраз-

мерной высоты орбиты 𝐻, наклонения орбиты 𝜃. Можно еще раз подчеркнуть, что полу-

ченная функция, приведенная на рис. 4, справедлива для условий солнечно-синхронной 

орбиты с наклонением 𝜃 = 94°, радиусом орбиты 𝑅𝑠𝑎𝑡=𝑅𝐸+400 км, и для материала с оп-

тическими свойствами 𝐴𝑎𝐸 , 𝐴𝑎𝑆 алюминия, приведенными в табл. 1. Кроме того, прене-

брежение излучением Земли в данном случае (в связи с малыми 𝐴𝑎𝐸) приведет к доста-

точно малым (менее 10%) погрешностям. Как говорится, например, в работе [33], эле-

менты космических аппаратов, активно излучающие инфракрасное излучение (как при-

мер радиаторы), могут испытывать более значительный нагрев за счет излучения Земли.  

 
а                                                    б 

 

Рис. 5. а) Выделенные в рефлекторе типы элементов с различной  

(по отношению к солнечным лучам) ориентацией 

б) Ориентация элемента каркаса рефлектора, используемая система координат,  

𝛼𝑐 –отклонение солнечных лучей от нормали, 

 𝜓 – центральный угол, стягиваемый светопоглощающей полосой 

 

По результатам работы [31], использование медной фольги в качестве материала 

внешнего покрытия приводит к перегреву, а использование только алюминиевой – наобо-

рот, к недостаточному нагреву. Для достижения требуемых температур предлагается вве-

сти светопоглощающую полосу – область внешней границы с отличными от остальной 

внешней границы оптическими свойствами (рис. 5, б). Это отличие может быть техниче-

ски достигнуто различными способами (различные степени шероховатости, использова-

ние сплавов, различных светопоглощающих покрытий). В рамках данной работы, прове-

дено исследование возможности достижения нужной температуры использованием раз-

личных материалов с известными свойствами, применение которых при создании кон-

струкции целесообразно ввиду их доступности и стоимости. При моделировании счита-

лось, что основной материал внешней границы – алюминиевая фольга, а светопоглоща-

ющая полоса выполнена из меди. Таким образом, для этих областей отличаются матери-

альные константы 𝐴𝑎𝐸 , 𝐴𝑎𝑆, 𝜀, 𝑘 (приведены в табл. 1). На рисунке 5, б показан централь-

ный угол 𝜓,  стягиваемый светопоглощающей полосой. Также на этом рисунке вводим 

угол 𝛼𝑐 – угол между направлением падения солнечного излучения и плоскостью осевого 

сечения цилиндра (между векторами 𝝉𝑆 и 𝝉𝑆𝑛). Для выделенных типов элементов (рис. 5, 

а) главным отличием являются различные углы падения солнечного света. Будем учиты-

вать его с помощью различных 𝛼𝑐 . По результатам моделирования, изменение 
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ориентации земного излучения относительно моделируемого образца (смещение направ-

ления к центру Земли) приводит к небольшим смещениям в полях равновесных темпера-

тур, но их минимальные и максимальные значения практически не изменяются (различия 

менее 1%). Поэтому при расчетах считаем, что Земля находится с противоположной от 

Солнца стороны. В таблице 2 приведем значения углов для различных выделенных типов 

элементов. 

Установим геометрические параметры моделируемой конструкции. Элемент ре-

флектора представляем в виде полого составного цилиндра с высотой ℎ = 1м, 𝑟 – внут-

ренний радиус, 𝑅 – внешний радиус, 𝑅𝑖 ,    𝑖 = {1,2,3} – радиус концентрической окруж-

ности, по которой проходит граница материалов (фольги, силикона либо препрега). Ну-

мерация 𝑅𝑖 производится в порядке возрастания (из центра круга).  

Таблица 2. Углы αс между направлением падения солнечного излучения и осевой плоскостью 

цилиндра для различных типов элементов каркаса 

Элемент № αс, ° cos αс 

1 0 1 

2 0 1 

3 25 0.9 

4 41 0.75 

5 60 0.5 

 

Уточним связь между оптическими константами 𝜀 – коэффициент излучения (сте-

пень черноты), 𝐴𝑎𝐸 = 𝜀 – эффективный коэффициент поглощения земного излучения ма-

териалом внешней стенки цилиндра, 𝐴𝑎𝑆 − эффективный коэффициент поглощения сол-

нечного излучения материалом внешней стенки цилиндра,  𝐴𝑟𝑆 – эффективный коэффи-

циент отражения солнечного света. Так как стенки цилиндра абсолютно непрозрачны, 

коэффициенты отражения и поглощения по определению связаны равенством 𝐴𝑎 + 𝐴𝑟 =
1. Следствием из закона Кирхгофа является соответствие (совпадение) степени серости 

ε и коэффициента поглощения 𝐴𝑎 в случае поглощения монохромного света. Такое же 

соответствие выполняется в случае, когда поглощаемый и излучаемый поток имеют оди-

наковый (или в нашем случае приблизительно схожий) спектральный состав (𝐴𝑎𝐸 = 𝜀). 
Для обеспечения долгосрочного требуемого режима работы космических аппаратов 

также применяются специальные покрытия, обладающие, как правило, низкими эффек-

тивными коэффициентами 𝐴𝑎 и 𝜀 [33]. 

Излучение в окружающий космос происходит согласно закону Стефана–Больц-

мана: 

𝑄𝑅𝑎𝑑 = 𝜎𝜀𝑇4,   

где 𝜎 = 5.67 ∗ 10−8,
Вт

м2K4
 – постоянная СтефанаБольцмана, 𝜀 – коэффициент излучения, 

𝑇 – локальная температура стенки цилиндра. 

Нормальная составляющая теплового потока Солнца при достижении внешней гра-

ницы частично отражается и частично поглощается. Учитывая, что поглощаемый поток 

не может быть отрицательным (в теневой области он нулевой), после преобразований 

получим: 

𝑄𝑆𝑎 = 𝐴𝑎𝑆 𝑄𝑆 (𝝉𝑆 ∙ 𝝉𝑆𝑛)  max(−𝝉𝑆𝑛 ∙ 𝐧, 0) =  𝐴𝑎𝑆 𝑄𝑆 cos (𝛼𝑐) max(−𝝉𝑆𝑛 ∙ 𝐧, 0),  

Тепловой поток на внешней границе: 

𝑄 = 𝑄𝑆𝑎 + 𝑄𝐸𝑎 − 𝑄𝑅𝑎𝑑.                                                        (1) 
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Во внутренних областях составляющих цилиндров ставится классическая задача 

теплопроводности: 
𝜕𝑇

𝜕𝑡
− æ∆𝑇 = 0,æ =

𝑘

𝜌 𝑐
, 

где 𝜌, 𝑐, æ, 𝑘 − плотность, теплоемкость, коэффициенты температуропроводности и теп-

лопроводности материала соответственно, ∆ – оператор Лапласа. На границах двух сред 

накладывается условие на нормальную к поверхности составляющую теплового потока: 

−𝑘 grad 𝑇 ∙ 𝐧 = 𝑸п ∙ 𝐧 = 𝑄, (2) 

где grad 𝑇– градиент температуры,  𝐧 – единичная нормаль к внешней поверхности 𝑆0, 

𝑸п – полный вектор теплового потока, 𝑄 – величина нормально поглощаемого теплового 

потока. Можно отметить, что модуль вектора 𝑸п и величина 𝑄 отличаются, так как в 𝑸п 

входит помимо нормального еще и перенос тепла вдоль границы двух тел S0. Для внеш-

ней стенки 𝑆0 величина 𝑄 определяется формулой (1).  

Для соприкасающихся внутренних границ областей 𝑆𝑖 задается идеальный тепло-

вой контакт: 

{
𝑇1|𝑆𝑖 = 𝑇2|𝑆𝑖

𝑸п1 ∙ 𝐧1|𝑆𝑖 = −𝑸п2 ∙ 𝐧2|𝑆𝑖
, 

где 𝑆𝑖 – поверхность контакта, 𝑇 − температура,  𝑸п − полный вектор теплового потока, 

𝐧 − внешняя нормаль, причем величины с индексами 1 и 2 относятся к различным телам 

на их общей границе. На внутренней границе 𝑆 происходит лучистый теплообмен за счет 

теплового излучения внутренних стенок цилиндра. Подробный вывод формул приведен 

в работе [31], здесь приведем конечный результат: 

𝑄 = 𝜀 [∫(𝜀𝜎𝑇1
4 + (1 − 𝜀)𝑄пад 1)

(𝒍 ∙ 𝐧1)(−𝒍 ∙ 𝐧2)

𝜋|𝒍|4
𝑆

𝑑𝑆 − 𝜎𝑇2
4] , (3) 

где 𝑄 − модуль нормальной составляющей вектора теплового потока, определяемый для 

точки внутренней границы, 𝑇2 − температура в этой точке, величины 𝑇1, 𝐧1, 𝑄пад 1 отно-

сятся к промежуточной точке внутренней поверхности, которая пробегает всю границу 𝑆 

при интегрировании,  𝑄пад 1 −  нормальный тепловой поток, падающий суммарно на 1 

точку от всей внутренней поверхности 𝑆, 𝒍 − вектор, соединяющий первую точку со вто-

рой. Так как это выражение содержит внутри интеграла по внутренней поверхности 

𝑄пад 1, которое также определяется интегрально, для разрешения при численном модели-

ровании используют дискретный аналог приведенной выше формулы (3), при этом теп-

ловые потоки определяются итерационным образом (метод Ньютона–Рафсона). Реализа-

ция этого метода выполняется встроенным в пакет Ansys модулем Radiosity. 

Решение стационарной задачи не зависит от начальных условий, но так как мы ре-

ализуем численно итерационный поиск, то сформулируем начальные условия для пол-

ноты постановки. Во всей расчетной области задается начальная температура T(x) =
20°C. 

2. Реализация в пакете Ansys и результаты вычислений 

Поставленная задача решалась численно с использованием вычислительного па-

кета Ansys. Численное моделирование имеет смысл использовать, так как запуск опыт-

ного образца в космос требует больших затрат, и с помощью численного эксперимента 

можно получить предварительную оценку результата. 
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Рассматривается набор связанных соосных цилиндрических элементов, особенно-

сти которых подробно изложены в работе [31]. Внутренняя цилиндрическая полость 

имеет радиус 84 мм, затем идут: слой силикона толщиной 1 мм, слой препрега толщиной 

2 мм, слой силикона 1 мм, слой фольги снаружи 0,03 мм (𝑟 = 84, 𝑅1 = 85, 𝑅2 = 87, 𝑅3 =
88, 𝑅 = 88.03 мм).  

 
                        а                                  б                                  в                                     г 

Рис. 6. Распределение температур в элементах различных типов, °C  

(1,2 тип – а, 3-б, 4-в, 5-г), в случае 𝜓=30° 

Слои силикона введены для предотвращения слипания структуры из препрега и 

уменьшения возможных испарений, составляющих при протекании реакции полимери-

зации. Малая толщина внешнего слоя фольги приводит к необходимости использования 

достаточно мелких конечных элементов, размеры которых сопоставимы с толщиной 

этого слоя (0.03 мм). Была проведена проверка сходимости, отличие результатов исполь-

зуемого разбиения от более мелкого менее 1%. 

На рисунке 6 приведены результаты вычислений для случая, когда все типы элемен-

тов имеют одинаковую величину поглощающей полосы 𝜓 = 30°. Так как достаточной 

для протекания реакции мы считаем температуру в 160°C, можно сделать вывод, что эле-

менты 1, 2, 3 типов в таком случае достаточно хорошо прогреты, но элементы 4 и осо-

бенно 5 типа нагреваются недостаточно сильно. Для отверждения всех элементов потре-

буется либо увеличить размеры 𝜓 светопоглощающей полосы на требуемых элементах 

(в соответствии с графиками на рис. 7), либо повернуть всю конструкцию так, чтобы на 

элементы нужных типов солнечный свет падал под углом, более близким к нормальному 

(приблизительный минимум 70°).  

Для регулирования стационарных температур предлагалось изменять размеры све-

топоглощающей полосы, были построены графики зависимостей минимальных и макси-

мальных стационарных температур конструкции от угла падения солнечного света и ве-

личины поглощающей полосы (рис. 7, 8). 

На графиках (рис. 7, 8) вертикальными пунктирными линиями обозначены значе-

ния 𝛼𝑐,  соответствующие выделенным типам элементов (табл. 2), а горизонтальной 

пунктирной линией – требуемая температура для полноценного протекания реакции от-

верждения. Исходя из графиков, для каждого типа элементов можно подобрать соответ-

ствующую величину светопоглощающей полосы, достаточную для достижения требуе-

мых температур. Также возможно проконтролировать величину максимальных темпера-

тур, которые могут в определенных случаях превышать допустимые значения (>200 °C), 

что нежелательно, так как может провести к разрушению составляющих конструкции. 
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На основании проведенных расчетов сделан вывод о том, что в случае αс=75° и 𝜓 = 10° 
температура будет существенно ниже требуемой. В связи с этим расчет для данного слу-

чая не был произведен для экономии времени и вычислительных ресурсов.  

 

Рис. 7. Минимальные температуры в цилиндре, в зависимости от направления солнеч-

ного излучения 𝛼𝑐 и величины поглощающей полосы 𝜓, °C 

  

Рис. 8. Максимальные температуры в цилиндре, в зависимости от направления сол-

нечного излучения 𝛼𝑐 и величины поглощающей полосы 𝜓, °C 

 

Одним из возможных плюсов данной конструкции является возможность регули-

ровать получаемый от Солнца тепловой поток, изменяя ориентацию конструкции отно-

сительно Солнца. Так, поворот поглощающей полосы в затемненную область приведет к 

сильному уменьшению статических температур. 

 

Заключение 

Рассмотрено статическое температурное состояние каркаса рефлектора космиче-

ского радиолокатора в условиях солнечно-синхронной орбиты. Оценено влияние Зем-

ного излучения на элементы каркаса. С помощью предложенного способа изменения 

внешнего покрытия можно добиться температур, достаточных для протекания реакции 

полимеризации. Если по техническим причинам создание светопоглощающей полосы 

нежелательно, возможно оценить температуры для поэтапного отверждения конструк-

ции, путем поочередного ориентирования на солнечную сторону отдельных элементов. 

Тип 1,2 Тип 3 Тип 4 Тип 5 

Тип 1,2 Тип 3 Тип 4 Тип 5 
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Описанная методика может быть применена для проектирования конструкций из различ-

ных композитных материалов, имеющих другие температурные режимы отверждения. 

Таким образом, отверждение пневматически раздуваемых в космосе опорных кон-

струкций за счет нагрева солнечным светом представляется возможным, при использо-

вании описанных в работе материалов внешнего покрытия для достижения нужных тем-

ператур. Такие конструкции могут быть использованы для создания крупногабаритных 

разворачиваемых антенн, рефлекторов и других конструкций, требующих жесткого опор-

ного каркаса. Исследуемый материал (ВСТ-1208) обладает рядом положительных 

свойств, позволяющих использовать его в качестве связующего для проектируемой кон-

струкции. Он способен достаточно долгое время находиться на взлетной площадке, не 

отверждаясь в ожидании запуска. В ходе реакции практически отсутствует испарение ле-

тучих компонентов. 
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Аннотация. В работе представлен кинематический анализ двухзвенного манипуляци-

онного робота типа SCARA с учетом непараллельности осей и мануального рабочего 

органа с четырьмя степенями свободы. Построена кинематическая модель с учетом 

рабочего органа, решена обратная задача кинематики. Рассмотрен пример медицин-

ского манипуляционного робота для применения полученной модели в проведении 

операции по транспедикулярной фиксации позвоночника. 
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Abstract. This paper presents a kinematic analysis of a two-joint SCARA-type medical ma-

nipulation robot, accounting for non-parallelism of the rotational axes and incorporating a 

manual end-effector with four degrees of freedom. A kinematic model integrating the end-

effector is developed, and the inverse kinematics problem is solved. The proposed approach 

is demonstrated on a medical manipulation robot designed for transpedicular spinal fixation 

procedures. 

Keywords: medical manipulation robot; kinematic analysis; non-parallel axes; inverse kin-

ematics problem (IKP). 

For citation: Smirnov, D. B., Frolov, I. A., Vorotnikov, A. A., Grin', A. A. and Levchenko, O. V.  (2025), 

"Kinematic Modeling of a SCARA-Type Medical Manipulation Robot Accounting for Non-Parallelism 

of Rotational Axes and a Manual End-Effector With Four Degrees of Freedom", Bulletin of Perm Uni-

versity. Mathematics. Mechanics. Computer Science, no 4(70), pp. 76−86, DOI: 10.17072/1993-0550-

2025-4-76-86, https://elibrary.ru/nfpfrh. 

Acknowledgments: the study was carried out with financial support by the FSBEI HE "ROSUNIMED" 

OF MOH OF RUSSIA. 

The article was submitted 15.09.2025; approved after reviewing 15.11.2025; accepted for publication 

08.12.2025. 

Введение 

Роботы обладают геометрическими погрешностями, которые являются следствием не-

точного изготовления деталей и сборке узлов. Для компенсации данных погрешностей 

могут применяться различные методы калибровки (например, с использованием оптиче-

ских измерительных систем, таких как лазерный трекер) [1]. Традиционные модели, не 
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учитывающие фактические длины звеньев и их относительное расположение, не при-

годны для задач медицинской робототехники. 

Вопрос сравнения движений хирурга и роботизированной системы активно исследу-

ется в последние годы. В работах [2–5] показано, что роботизированные комплексы обес-

печивают сравнительно лучшие показатели по критериям скорости резания, отклонения 

от заданной траектории и повторяемости движений. Однако эти исследования сосредо-

точены на полностью активных системах. В случае гибридных архитектур, сочетающих 

роботизированное позиционирование с мануальным введением инструмента, подобные 

критерии требуют пересмотра, поскольку финальная фаза вмешательства остается под 

контролем хирурга. 

В настоящее время существуют решения, где робот управляется хирургом с помощью 

удаленного пульта управления [6, 7]. Также в современных роботизированных системах 

для транспедикулярной фиксации, таких как ROSA Spine, ExcelsiusGPS и Mazor X, робот 

выполняет точное позиционирование направляющей втулки в соответствии с предопера-

ционным планом, после чего хирург вручную вводит инструмент или винт по заданной 

траектории [8–10]. Здесь же предлагается несколько иной подход, где ориентация зада-

ется не роботом программно, а хирургом мануально. 

В данной работе рассматривается двухзвенный манипуляционный робот типа SCARA, 

модифицированный для медицинских задач, с явным учетом непараллельности осей вра-

щения звеньев − фактора, обычно, игнорируемого в традиционных моделях. Особое вни-

мание уделяется интеграции мануального рабочего органа, устанавливаемого через сфе-

рический шарнир, который позволяет осуществлять ориентирование рабочий органа 

вручную, что особенно ценно в условиях операционной. 

Целью настоящей работы является разработка и верификация алгоритма решения об-

ратной задачи кинематики (ОЗК) для указанной системы с учетом относительного рас-

положения звеньев и мануального рабочего органа. 

Описание конструкции медицинского манипуляционного робота 

В данной работе рассматривается медицинский манипуляционный робот, который об-

ладает четырьмя степенями подвижности, предназначенный для проведения операций по 

транспедикулярной фиксации позвоночника. Его конструкция приведена на рис. 1. Пер-

вая и вторая степени подвижности используются для позиционирования в плоскости пер-

пендикулярной оси вращения первого звена, третья и четвертая – для ориентации рабо-

чего органа. Введение хирургического инструмента обеспечивается хирургом мануально 

в целях повышения безопасности пациента. 

С целью упрощения управления и позиционирования манипулятора предлагается не 

использовать третью и четвертую степени подвижности, с фокусом на первых двух. Так 

как на механический интерфейс устанавливается рабочий орган со сферическим шарни-

ром, обеспечивающий три степени свободы для задания требуемой ориентации инстру-

менту. Это компенсирует неиспользование третей и четвертой степеней подвижности. 

Подобный подход позволяет использовать упрощенную кинематическую модель в виде 

двухзвенного манипулятора с непараллельностью осей. 

Кинематическая модель двухзвенного манипуляционного робота с учетом  

непараллельности осей вращения 

Представлена модифицированная кинематическая схема SCARA-манипулятора, где 

ось вращения второго звена наклонена под углом α относительно оси первого звена на 
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рис. 2. Поскольку первая ось вращения также может быть наклонена относительно вер-

тикали вследствие особенности конструкции (погрешности установки и/или изготовле-

ния), то этот случай математически эквивалентен повороту всей мировой системы коор-

динат. Для направления оси вращения первого звена n1 по z.  

Ввиду этого рассматривается упрощенная модель с наклоном второй оси n2 относи-

тельно n1 (на углы a, f0 (n1 и n2 скрещивающиеся прямые)). Центр первого звена нахо-

дится в токе P0, длина первого и второго звена: l1 и l2 соответственно; q1 и q2 – обоб-

щенные координаты. 

 

Рис. 1. А) медицинский манипуляционный робот с четырьмя степенями подвижности: 1 

– первая степень подвижности, 2 – вторая, 3 – третья, 4 – четвертая, 5 – сферический 

шарнир (часть рабочего органа), 6 – мировая система координат (рамка, закрепленная 

на позвонке), 7 – целевое положение на фантоме с заданной ориентацией, 8 – рамка со 

светоотражающими маркерами для определения ориентации и положения с помощью 

навигационной системы, 9 – инструмент, установленный в рабочем органе.  

Б) Общий вид системы для проведения хирургических операций по транспедикулярной 

фиксации позвоночника: медицинский манипуляционный робот закреплен на столе, 

справа от него – навигационная система 

 

 
Рис. 2. Кинематическая схема двухзвенного манипулятора с наклонной осью вращения 
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При q1 = 0 первое звено направлено вдоль оси X. Положение второго шарнира можно 

выразить как: 

𝑃1(𝑞1) = 𝑃0 + 𝑙1 [
𝑐𝑜𝑠( 𝑞1)
𝑠𝑖𝑛( 𝑞1)

0

], (1) 

где 𝑃0 = [𝑥0, 𝑦0, 𝑧0]𝑇.  

С вращением первого звена вектор вращения второго звена будет также изменяться:  

 𝑛2(𝑞1) = [

𝑠𝑖𝑛( 𝑎) 𝑐𝑜𝑠( 𝑞1 + 𝑓0)
𝑠𝑖𝑛( 𝑎) 𝑠𝑖𝑛( 𝑞1 + 𝑓0)

𝑐𝑜𝑠( 𝑎)
].  (2) 

Начальное направление второго звена (при q2 = 0): 

 𝑗2 = [

𝑐𝑜𝑠( 𝑎) 𝑐𝑜𝑠( 𝑞1 + 𝑓0)
𝑐𝑜𝑠( 𝑎) 𝑠𝑖𝑛( 𝑞1 + 𝑓0)

− 𝑠𝑖𝑛( 𝑎)
]. (3) 

Положение конца второго звена может быть выражено с использованием формул 

(1)−(3): 

𝑃2 = 𝑃1(𝑞1) + 𝑙2 ⋅ 𝑗2(𝑞1, 𝑞2), (4) 

где  

𝑗2(𝑞1, 𝑞2) = 𝑐𝑜𝑠( 𝑞2) ⋅ 𝑗2 + 𝑠𝑖𝑛( 𝑞2) ⋅ (𝑛2(𝑞1) × 𝑗2), 

 

𝑛2(𝑞1) × 𝑗2 = [
− 𝑠𝑖𝑛( 𝑞1 + 𝑓0)
𝑐𝑜𝑠( 𝑞1 + 𝑓0)

0

]. 

Обратная задача кинематики (ОЗК) для двухзвенного манипулятора с наклонной осью 

вращения второго звена. Для решения ОЗК используется формула для концевой точки 

P2, выведенная ранее (4). Для этого необходимо решить систему уравнений: 

 {

𝑥 = 𝑥0 + 𝑙1 𝑐𝑜𝑠( 𝑞1) + 𝑙2(𝑐𝑜𝑠( 𝑞2) 𝑐𝑜𝑠( 𝑎) 𝑐𝑜𝑠( 𝑞1 + 𝑓0) − 𝑠𝑖𝑛( 𝑞2) 𝑠𝑖𝑛( 𝑞1 + 𝑓0))
𝑦 = 𝑦0 + 𝑙1 𝑠𝑖𝑛( 𝑞1) + 𝑙2(𝑐𝑜𝑠( 𝑞2) 𝑐𝑜𝑠( 𝑎) 𝑠𝑖𝑛( 𝑞1 + 𝑓0) + 𝑠𝑖𝑛( 𝑞2) 𝑐𝑜𝑠( 𝑞1 + 𝑓0))

𝑧 = 𝑧0 − 𝑙2 𝑐𝑜𝑠( 𝑞2) 𝑠𝑖𝑛( 𝑎)
. (5) 

Из последнего уравнения системы находим q2:  

 𝑞2 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑧0−𝑧

𝑙2 𝑠𝑖𝑛(𝑎)
). (6) 
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Обозначим 𝜙 = 𝑞1 + 𝑓0, тогда система (5) примет вид:  

{
 

 
𝐴 = 𝑈 𝑐𝑜𝑠(𝜙) + 𝑉 𝑠𝑖𝑛(𝜙)
𝐵 = −𝑉 𝑐𝑜𝑠(𝜙) + 𝑈 𝑠𝑖𝑛(𝜙)

𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑧0 − 𝑧

𝑙2 𝑠𝑖𝑛( 𝑎)
)

, (7) 

где 

𝑐𝑜𝑠(𝜙 − 𝑓0) = 𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠( 𝑓0) + 𝑠𝑖𝑛( 𝜙) 𝑠𝑖𝑛( 𝑓0), 

𝑠𝑖𝑛(𝜙 − 𝑓0) = 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠( 𝑓0) − 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛( 𝑓0), 

𝐴 = 𝑥 − 𝑥0, 

𝐵 = 𝑦 − 𝑦0, 

𝑈 = 𝑙1 𝑐𝑜𝑠( 𝑓0) + 𝑙2 𝑐𝑜𝑠( 𝑞2) 𝑐𝑜𝑠( 𝑎), 

𝑉 = 𝑙1 𝑠𝑖𝑛( 𝑓0) − 𝑙2 𝑠𝑖𝑛( 𝑞2).  

Тогда  

 𝑞1 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑈𝐵+𝐴𝑉

𝐴𝑈−𝐵𝑉
) − 𝑓0. (8) 

 

Мануальный рабочий орган: геометрическая декомпозиция 

Поскольку мануальный рабочий орган вводится хирургом вручную, его выдвижение, 

ориентация могут быть выставлены до перемещения робота с помощью навигационной 

системы. Это возможно, так как целевая ориентация, положение конца рабочего органа, 

а также глубина погружения винта предопределены в ходе планирования. Это позволяет 

декомпозировать задачу. 

На рисунке 3 представлена кинематическая схема мануального рабочего органа. Рас-

стояние d между центром сферического шарнира и осью направляющей может быть 

определено экспериментально с использованием оптической навигационной системы: 

для этого регистрируются координаты двух точек, лежащих на оси направляющей, после 

чего вычисляется расстояние от центра шарнира до полученной прямой. 

Поскольку на этапе предоперационного планирования заданы целевая точка Pt, еди-

ничный вектор требуемой ориентации инструмента v, а также расстояние d, задача сво-

дится к однозначному определению положения точки P2 точки крепления рабочего ор-

гана к манипулятору. Эта точка вычисляется геометрически как положение, из которого 

инструмент, ориентированный вдоль v и проходящий через направляющую, достигает 

целевой точки Pt. 

Исходя из этого, можно однозначно получить точку Р2. Используя рис. 3, имеем: 

 𝑃2 = 𝑃𝑡 − 𝑑 ⋅ 𝑑𝑣 − 𝑙𝑡 ⋅ 𝑣. (9) 
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Рис. 3. Кинематическая схема мануального рабочий органа с четырьмя степенями свободы 

 

Использование полученной модели для медицинского манипуляционного 

робота. Идентификация начальных параметров 

Для определения фактических длин звеньев l1, l2 и направления осей вращения n1, n2 

необходимо последовательно вращать звенья, собирая точки с помощью навигационной 

системы с меток, расположенных на рамке 8 на рис. 1 А). После того как точки получены, 

проводится аппроксимация плоскостями для каждой оси вращения, что позволяет опре-

делить направление векторов осей вращения. Далее аппроксимация окружностью, 

например, методом наименьших квадратов (МНК) [11, 12]. После чего можно определить 

центр основания P0 и длины звеньев (l1, l2). 

Центр сферического шарнира определяется экспериментально. Для этого мануальный 

рабочий орган освобождается от фиксации, после чего в четырех и более различных по-

ложениях регистрируются координаты маркеров на рамке 8, с использованием оптиче-

ской навигационной системы. Полученное множество точек аппроксимируется сферой 

методом наименьших квадратов; ее центр принимается за центр сферического шарнира. 

Определение взаимного расположения направляющей и центра сферического шар-

нира определяется следующим образом: по двум положениям фиксации рабочего органа 

вдоль направляющей строится прямая, задающая ориентацию направляющей в про-

странстве, что позволяет установить её геометрическую связь с центром сферического 

шарнира. По двум положениям фиксации рабочего органа вдоль направляющей строится 

прямая, задающая ориентацию направляющей в пространстве, что позволяет установить 

ее геометрическую связь с центром сферического шарнира. 

Информация о целевой точке, требуемой ориентации инструмента и глубине его вве-

дения формируется хирургом на этапе предоперационного планирования на основе дан-

ных компьютерной томографии. Интраоперационная привязка плана к анатомии паци-

ента осуществляется с помощью оптической навигационной системы, обеспечивающей 

отображение отклонений текущего положения инструмента от запланированной траек-

тории. 

Общий алгоритм применения предложенного метода включает следующие этапы: 
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1. Идентификация кинематических параметров манипулятора: определение длин 

звеньев, направлений осей вращения и положения основания с использованием 

навигационной системы. 

2. Идентификация геометрии рабочего органа: определение центра сферического 

шарнира и ориентации направляющей. 

3. Задание целевой конфигурации инструмента: установка требуемой ориентации и 

глубины выдвижения на основе предоперационного плана. 

4. Расчет обобщенных координат манипулятора: решение обратной задачи кинема-

тики и извлечение инструмента из направляющей для безопасного перемещения. 

5. Позиционирование манипулятора: перемещение в расчетное положение. 

6. Выполнение хирургической манипуляции: повторное введение инструмента в 

направляющую и его ручное введение в тело пациента в соответствии с заплани-

рованной траекторией. 

Заключение  

В работе предложена и верифицирована кинематическая модель двухзвенного меди-

цинского манипуляционного робота типа SCARA, учитывающая реальные геометриче-

ские особенности конструкции. Особенностью предложенной архитектуры является ин-

теграция мануального рабочего органа, закрепленного на сферическом шарнире, обеспе-

чивающем три степени свободы для ручной ориентации инструмента. Разработанный ал-

горитм решения обратной задачи кинематики учитывает, как геометрию манипулятора с 

непараллельными осями, так и параметры мануального инструмента, определяемые с ис-

пользованием оптической навигационной системы. Процедура идентификации геомет-

рических параметров, включая длины звеньев, направления осей вращения, положение 

центра сферического шарнира и ориентацию направляющей, реализована эксперимен-

тально и основана на стандартных методах аппроксимации (метод наименьших квадра-

тов). 
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зованных литературных источников необходимо представить на русском и английском языках (References). Список ли-

тературы на латинице, называемый References, готовится отдельно от Списка литературы и размещается сразу за ука-

занным списком. Ссылки на зарубежные источники необходимо повторять в Списке литературы и References. В 

References недопустимо использовать российские ГОСТы. Необходимо следовать требованиям международных стан-

дартов. Инструкция по оформлению списка литературы в латинице – References, стандарт "Harvard" находится по ссылке  

http://www.psu.ru/files/docs/ob-universitete/smi/nauchnyj-hurnal/metodicheskie_materialy/standart_Harvard.doc. 

ПОРЯДОК РЕЦЕНЗИРОВАНИЯ И ПУБЛИКАЦИИ СТАТЕЙ 

Все рукописи проходят двойное слепое рецензирование двумя специалистами в научной области исследования. 
При возникновении спорной ситуации назначается третий рецензент. Окончательное решение о публикации рукописи 
принимает главный редактор журнала.  

Датой поступления статьи считается день ее отправки через личный кабинет на сайте журнала или по электронной 
почте журнала (главного редактора). Рукописи рассматриваются в порядке их поступления в течение одного месяца в зависи-
мости от сложности ситуации и объема работы. Редакция оставляет за собой право без согласования с автором проводить 
литературную правку текстов статей, не изменяющую их основного смысла.  

Одобренные статьи публикуются бесплатно. Полнотекстовая версия каждой рукописи выставляется на сайте жур-
нала и в системе РИНЦ (e-library). 

http://www.psu.ru/files/docs/ob-universitete/smi/nauchnyj-hurnal/metodicheskie_materialy/standart_Harvard.doc
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Scientific periodical journal ʺBulletin of Perm University. Mathematics. Mechanics. Computer Scienceʺ is published 
since 1994 in the series of the journal ʺBulletin of Perm Universityʺ. Then it was registered as an independent publication 
in 2007. 

An author is allowed to publish no more than one article (also as co-author) in any section for each issue of the 
journal.  

Article’s structure should be accordant with the rules below and should be sent through the author's personal 
account on the journal's website. Articles should be sent in two formats: a text document and a pdf-file without infor-
mation about the author(s) (for review). Authors contact data (name, position and place of work with address, e-mail, 
phone number in a text document), a cover letter and an expert letter on the open publication possibility should be sent 
with the manuscript. Author(s) must make and sign consent to the personal data processing and an agreement. 

Abstract (in Russian and English) should contain main information of research: a problem including the goals and 
objectives of the study; research methods with novelty indication, if any; significant results and findings. The abstract size 
is approximately 250 words. 

Text should contain sections: Introduction, Materials and Methods, Results, Discussion, Conclusion, Acknowledg-
ments. The manuscript size is at least 6 typewritten pages. 

An article text must be formatted in the editor Word. The sheet format is A4. The top and bottom margins are 2.6 
cm, the right and left margins are 2.5 cm. The distances to the header and footer are 1.25 cm. Times New Roman Cyr 
font, size – 12 pt, single spacing. Legends for figures and tables are typed in italics style. Formulas are typed in the 
Equation editor. 

The structure of the article 

Article’s type 

UDC  

DOI 

EDN 

TITLE in Russian (Times New Roman font – 16 pt, bold). 

Name: author (s) name in full (Times New Roman font – 12 pt). 

Place of work (with departments), city, country (Times New Roman font – 11 pt), e-mail 

Abstract in Russian (Times New Roman font – 11 pt). 

Keywords in Russian: 5–7 words or phrases (Times New Roman font – 11 pt, italic). 

Information for citation in English (Times New Roman font – 11 pt, italic). 

Acknowledgments in English (Times New Roman font – 11 pt, italic). 

Submitted, approved, accepted dates of receipt in English (Times New Roman font – 11 pt, italic). 

TITLE in English (Times New Roman font – 16 pt, bold). 

In English author (s) name in full, place of work (with departments), city, country (Times New Roman font – 11 pt), 

e-mail.  

Abstract in English (Times New Roman font – 11 pt). 

Keywords in English: 5–7 words or phrases (Times New Roman font – 11 pt). 

Information for citation in English (Times New Roman font – 11 pt). 

Acknowledgments in English (Times New Roman font – 11 pt). 

Submitted, approved, accepted dates of receipt in English (Times New Roman font – 11 pt). 

The article text (Times New Roman font – 12 pt) is typed the paragraph indent is 1.0 cm (set automatically, not spaces). 

No other indents are allowed. Justify the text in width (Times New Roman font – 16 pt).. 

References are formed in a single format with using GOST R 7.0.100–2018 without a dash. If a source from an electronic 

resource is used, the author should indicate the request date. To indicate a source in text author uses square brackets 

after the quotation mention. References must be submitted in Russian and English.  

The References list in Latin, called References, is prepared separately from the References List in Russian and placed 

below. Foreign sources references should be repeated in the References Lists in Russian and English. It is inadmissible 

to use Russian GOSTs in References. It is necessary to follow the requirements of international standards. Instructions 

on the References in Latin script design – References, Harvard standard can be found at http://www.psu.ru/files/docs/ob-

universitete/smi/nauchnyj-zhurnal/metodicheskie_materialy/standart_Harvard.doc 

 

REVIEW AND PUBLICATION OF ARTICLES 

All manuscripts are double-blind peer-reviewed by two research scientists. If a disputable situation arises, a third 
reviewer is appointed. The final decision on the manuscript publication is made by the editor-in-chief of the journal. 

The receipt date of the article is the day of its submission through the personal account on the journal's website or 
by e-mail of the journal (or editor-in-chief). Manuscripts are reviewed in the order they are received within one month, 
review period may be changed depending on a situation complexity and a works amount. The journal editors can to edit 
the article text without basic meaning change. 

Approved articles are published free. The full-text version of each manuscript is posted on the journal's website 
and in the RSCI system (e-library). 
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