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Аннотация. В работе представлен кинематический анализ двухзвенного манипуляци-

онного робота типа SCARA с учетом непараллельности осей и мануального рабочего 

органа с четырьмя степенями свободы. Построена кинематическая модель с учетом 

рабочего органа, решена обратная задача кинематики. Рассмотрен пример медицин-

ского манипуляционного робота для применения полученной модели в проведении 

операции по транспедикулярной фиксации позвоночника. 
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Abstract. This paper presents a kinematic analysis of a two-joint SCARA-type medical ma-

nipulation robot, accounting for non-parallelism of the rotational axes and incorporating a 

manual end-effector with four degrees of freedom. A kinematic model integrating the end-

effector is developed, and the inverse kinematics problem is solved. The proposed approach 

is demonstrated on a medical manipulation robot designed for transpedicular spinal fixation 

procedures. 
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Введение 

Роботы обладают геометрическими погрешностями, которые являются следствием не-

точного изготовления деталей и сборке узлов. Для компенсации данных погрешностей 

могут применяться различные методы калибровки (например, с использованием оптиче-

ских измерительных систем, таких как лазерный трекер) [1]. Традиционные модели, не 
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учитывающие фактические длины звеньев и их относительное расположение, не при-

годны для задач медицинской робототехники. 

Вопрос сравнения движений хирурга и роботизированной системы активно исследу-

ется в последние годы. В работах [2–5] показано, что роботизированные комплексы обес-

печивают сравнительно лучшие показатели по критериям скорости резания, отклонения 

от заданной траектории и повторяемости движений. Однако эти исследования сосредо-

точены на полностью активных системах. В случае гибридных архитектур, сочетающих 

роботизированное позиционирование с мануальным введением инструмента, подобные 

критерии требуют пересмотра, поскольку финальная фаза вмешательства остается под 

контролем хирурга. 

В настоящее время существуют решения, где робот управляется хирургом с помощью 

удаленного пульта управления [6, 7]. Также в современных роботизированных системах 

для транспедикулярной фиксации, таких как ROSA Spine, ExcelsiusGPS и Mazor X, робот 

выполняет точное позиционирование направляющей втулки в соответствии с предопера-

ционным планом, после чего хирург вручную вводит инструмент или винт по заданной 

траектории [8–10]. Здесь же предлагается несколько иной подход, где ориентация зада-

ется не роботом программно, а хирургом мануально. 

В данной работе рассматривается двухзвенный манипуляционный робот типа SCARA, 

модифицированный для медицинских задач, с явным учетом непараллельности осей вра-

щения звеньев − фактора, обычно, игнорируемого в традиционных моделях. Особое вни-

мание уделяется интеграции мануального рабочего органа, устанавливаемого через сфе-

рический шарнир, который позволяет осуществлять ориентирование рабочий органа 

вручную, что особенно ценно в условиях операционной. 

Целью настоящей работы является разработка и верификация алгоритма решения об-

ратной задачи кинематики (ОЗК) для указанной системы с учетом относительного рас-

положения звеньев и мануального рабочего органа. 

Описание конструкции медицинского манипуляционного робота 

В данной работе рассматривается медицинский манипуляционный робот, который об-

ладает четырьмя степенями подвижности, предназначенный для проведения операций по 

транспедикулярной фиксации позвоночника. Его конструкция приведена на рис. 1. Пер-

вая и вторая степени подвижности используются для позиционирования в плоскости пер-

пендикулярной оси вращения первого звена, третья и четвертая – для ориентации рабо-

чего органа. Введение хирургического инструмента обеспечивается хирургом мануально 

в целях повышения безопасности пациента. 

С целью упрощения управления и позиционирования манипулятора предлагается не 

использовать третью и четвертую степени подвижности, с фокусом на первых двух. Так 

как на механический интерфейс устанавливается рабочий орган со сферическим шарни-

ром, обеспечивающий три степени свободы для задания требуемой ориентации инстру-

менту. Это компенсирует неиспользование третей и четвертой степеней подвижности. 

Подобный подход позволяет использовать упрощенную кинематическую модель в виде 

двухзвенного манипулятора с непараллельностью осей. 

Кинематическая модель двухзвенного манипуляционного робота с учетом  

непараллельности осей вращения 

Представлена модифицированная кинематическая схема SCARA-манипулятора, где 

ось вращения второго звена наклонена под углом α относительно оси первого звена на 
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рис. 2. Поскольку первая ось вращения также может быть наклонена относительно вер-

тикали вследствие особенности конструкции (погрешности установки и/или изготовле-

ния), то этот случай математически эквивалентен повороту всей мировой системы коор-

динат. Для направления оси вращения первого звена n1 по z.  

Ввиду этого рассматривается упрощенная модель с наклоном второй оси n2 относи-

тельно n1 (на углы a, f0 (n1 и n2 скрещивающиеся прямые)). Центр первого звена нахо-

дится в токе P0, длина первого и второго звена: l1 и l2 соответственно; q1 и q2 – обоб-

щенные координаты. 

 

Рис. 1. А) медицинский манипуляционный робот с четырьмя степенями подвижности: 1 

– первая степень подвижности, 2 – вторая, 3 – третья, 4 – четвертая, 5 – сферический 

шарнир (часть рабочего органа), 6 – мировая система координат (рамка, закрепленная 

на позвонке), 7 – целевое положение на фантоме с заданной ориентацией, 8 – рамка со 

светоотражающими маркерами для определения ориентации и положения с помощью 

навигационной системы, 9 – инструмент, установленный в рабочем органе.  

Б) Общий вид системы для проведения хирургических операций по транспедикулярной 

фиксации позвоночника: медицинский манипуляционный робот закреплен на столе, 

справа от него – навигационная система 

 

 
Рис. 2. Кинематическая схема двухзвенного манипулятора с наклонной осью вращения 
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При q1 = 0 первое звено направлено вдоль оси X. Положение второго шарнира можно 

выразить как: 

𝑃1(𝑞1) = 𝑃0 + 𝑙1 [
𝑐𝑜𝑠( 𝑞1)
𝑠𝑖𝑛( 𝑞1)

0

], (1) 

где 𝑃0 = [𝑥0, 𝑦0, 𝑧0]𝑇.  

С вращением первого звена вектор вращения второго звена будет также изменяться:  

 𝑛2(𝑞1) = [

𝑠𝑖𝑛( 𝑎) 𝑐𝑜𝑠( 𝑞1 + 𝑓0)
𝑠𝑖𝑛( 𝑎) 𝑠𝑖𝑛( 𝑞1 + 𝑓0)

𝑐𝑜𝑠( 𝑎)
].  (2) 

Начальное направление второго звена (при q2 = 0): 

 𝑗2 = [

𝑐𝑜𝑠( 𝑎) 𝑐𝑜𝑠( 𝑞1 + 𝑓0)
𝑐𝑜𝑠( 𝑎) 𝑠𝑖𝑛( 𝑞1 + 𝑓0)

− 𝑠𝑖𝑛( 𝑎)
]. (3) 

Положение конца второго звена может быть выражено с использованием формул 

(1)−(3): 

𝑃2 = 𝑃1(𝑞1) + 𝑙2 ⋅ 𝑗2(𝑞1, 𝑞2), (4) 

где  

𝑗2(𝑞1, 𝑞2) = 𝑐𝑜𝑠( 𝑞2) ⋅ 𝑗2 + 𝑠𝑖𝑛( 𝑞2) ⋅ (𝑛2(𝑞1) × 𝑗2), 

 

𝑛2(𝑞1) × 𝑗2 = [
− 𝑠𝑖𝑛( 𝑞1 + 𝑓0)
𝑐𝑜𝑠( 𝑞1 + 𝑓0)

0

]. 

Обратная задача кинематики (ОЗК) для двухзвенного манипулятора с наклонной осью 

вращения второго звена. Для решения ОЗК используется формула для концевой точки 

P2, выведенная ранее (4). Для этого необходимо решить систему уравнений: 

 {

𝑥 = 𝑥0 + 𝑙1 𝑐𝑜𝑠( 𝑞1) + 𝑙2(𝑐𝑜𝑠( 𝑞2) 𝑐𝑜𝑠( 𝑎) 𝑐𝑜𝑠( 𝑞1 + 𝑓0) − 𝑠𝑖𝑛( 𝑞2) 𝑠𝑖𝑛( 𝑞1 + 𝑓0))
𝑦 = 𝑦0 + 𝑙1 𝑠𝑖𝑛( 𝑞1) + 𝑙2(𝑐𝑜𝑠( 𝑞2) 𝑐𝑜𝑠( 𝑎) 𝑠𝑖𝑛( 𝑞1 + 𝑓0) + 𝑠𝑖𝑛( 𝑞2) 𝑐𝑜𝑠( 𝑞1 + 𝑓0))

𝑧 = 𝑧0 − 𝑙2 𝑐𝑜𝑠( 𝑞2) 𝑠𝑖𝑛( 𝑎)
. (5) 

Из последнего уравнения системы находим q2:  

 𝑞2 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑧0−𝑧

𝑙2 𝑠𝑖𝑛(𝑎)
). (6) 
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Обозначим 𝜙 = 𝑞1 + 𝑓0, тогда система (5) примет вид:  

{
 

 
𝐴 = 𝑈 𝑐𝑜𝑠(𝜙) + 𝑉 𝑠𝑖𝑛(𝜙)
𝐵 = −𝑉 𝑐𝑜𝑠(𝜙) + 𝑈 𝑠𝑖𝑛(𝜙)

𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑧0 − 𝑧

𝑙2 𝑠𝑖𝑛( 𝑎)
)

, (7) 

где 

𝑐𝑜𝑠(𝜙 − 𝑓0) = 𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠( 𝑓0) + 𝑠𝑖𝑛( 𝜙) 𝑠𝑖𝑛( 𝑓0), 

𝑠𝑖𝑛(𝜙 − 𝑓0) = 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠( 𝑓0) − 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛( 𝑓0), 

𝐴 = 𝑥 − 𝑥0, 

𝐵 = 𝑦 − 𝑦0, 

𝑈 = 𝑙1 𝑐𝑜𝑠( 𝑓0) + 𝑙2 𝑐𝑜𝑠( 𝑞2) 𝑐𝑜𝑠( 𝑎), 

𝑉 = 𝑙1 𝑠𝑖𝑛( 𝑓0) − 𝑙2 𝑠𝑖𝑛( 𝑞2).  

Тогда  

 𝑞1 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑈𝐵+𝐴𝑉

𝐴𝑈−𝐵𝑉
) − 𝑓0. (8) 

 

Мануальный рабочий орган: геометрическая декомпозиция 

Поскольку мануальный рабочий орган вводится хирургом вручную, его выдвижение, 

ориентация могут быть выставлены до перемещения робота с помощью навигационной 

системы. Это возможно, так как целевая ориентация, положение конца рабочего органа, 

а также глубина погружения винта предопределены в ходе планирования. Это позволяет 

декомпозировать задачу. 

На рисунке 3 представлена кинематическая схема мануального рабочего органа. Рас-

стояние d между центром сферического шарнира и осью направляющей может быть 

определено экспериментально с использованием оптической навигационной системы: 

для этого регистрируются координаты двух точек, лежащих на оси направляющей, после 

чего вычисляется расстояние от центра шарнира до полученной прямой. 

Поскольку на этапе предоперационного планирования заданы целевая точка Pt, еди-

ничный вектор требуемой ориентации инструмента v, а также расстояние d, задача сво-

дится к однозначному определению положения точки P2 точки крепления рабочего ор-

гана к манипулятору. Эта точка вычисляется геометрически как положение, из которого 

инструмент, ориентированный вдоль v и проходящий через направляющую, достигает 

целевой точки Pt. 

Исходя из этого, можно однозначно получить точку Р2. Используя рис. 3, имеем: 

 𝑃2 = 𝑃𝑡 − 𝑑 ⋅ 𝑑𝑣 − 𝑙𝑡 ⋅ 𝑣. (9) 
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Рис. 3. Кинематическая схема мануального рабочий органа с четырьмя степенями свободы 

 

Использование полученной модели для медицинского манипуляционного 

робота. Идентификация начальных параметров 

Для определения фактических длин звеньев l1, l2 и направления осей вращения n1, n2 

необходимо последовательно вращать звенья, собирая точки с помощью навигационной 

системы с меток, расположенных на рамке 8 на рис. 1 А). После того как точки получены, 

проводится аппроксимация плоскостями для каждой оси вращения, что позволяет опре-

делить направление векторов осей вращения. Далее аппроксимация окружностью, 

например, методом наименьших квадратов (МНК) [11, 12]. После чего можно определить 

центр основания P0 и длины звеньев (l1, l2). 

Центр сферического шарнира определяется экспериментально. Для этого мануальный 

рабочий орган освобождается от фиксации, после чего в четырех и более различных по-

ложениях регистрируются координаты маркеров на рамке 8, с использованием оптиче-

ской навигационной системы. Полученное множество точек аппроксимируется сферой 

методом наименьших квадратов; ее центр принимается за центр сферического шарнира. 

Определение взаимного расположения направляющей и центра сферического шар-

нира определяется следующим образом: по двум положениям фиксации рабочего органа 

вдоль направляющей строится прямая, задающая ориентацию направляющей в про-

странстве, что позволяет установить её геометрическую связь с центром сферического 

шарнира. По двум положениям фиксации рабочего органа вдоль направляющей строится 

прямая, задающая ориентацию направляющей в пространстве, что позволяет установить 

ее геометрическую связь с центром сферического шарнира. 

Информация о целевой точке, требуемой ориентации инструмента и глубине его вве-

дения формируется хирургом на этапе предоперационного планирования на основе дан-

ных компьютерной томографии. Интраоперационная привязка плана к анатомии паци-

ента осуществляется с помощью оптической навигационной системы, обеспечивающей 

отображение отклонений текущего положения инструмента от запланированной траек-

тории. 

Общий алгоритм применения предложенного метода включает следующие этапы: 
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1. Идентификация кинематических параметров манипулятора: определение длин 

звеньев, направлений осей вращения и положения основания с использованием 

навигационной системы. 

2. Идентификация геометрии рабочего органа: определение центра сферического 

шарнира и ориентации направляющей. 

3. Задание целевой конфигурации инструмента: установка требуемой ориентации и 

глубины выдвижения на основе предоперационного плана. 

4. Расчет обобщенных координат манипулятора: решение обратной задачи кинема-

тики и извлечение инструмента из направляющей для безопасного перемещения. 

5. Позиционирование манипулятора: перемещение в расчетное положение. 

6. Выполнение хирургической манипуляции: повторное введение инструмента в 

направляющую и его ручное введение в тело пациента в соответствии с заплани-

рованной траекторией. 

Заключение  

В работе предложена и верифицирована кинематическая модель двухзвенного меди-

цинского манипуляционного робота типа SCARA, учитывающая реальные геометриче-

ские особенности конструкции. Особенностью предложенной архитектуры является ин-

теграция мануального рабочего органа, закрепленного на сферическом шарнире, обеспе-

чивающем три степени свободы для ручной ориентации инструмента. Разработанный ал-

горитм решения обратной задачи кинематики учитывает, как геометрию манипулятора с 

непараллельными осями, так и параметры мануального инструмента, определяемые с ис-

пользованием оптической навигационной системы. Процедура идентификации геомет-

рических параметров, включая длины звеньев, направления осей вращения, положение 

центра сферического шарнира и ориентацию направляющей, реализована эксперимен-

тально и основана на стандартных методах аппроксимации (метод наименьших квадра-

тов). 
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