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Аннотация. В работе рассматривается применение компьютерной графики и 

операторной школы тензорного исчисления для наглядной визуализации 

используемых понятий и их физического смысла в механике деформируемых 

сред. Представленные в статье иллюстрации могут быть эффективным учебным 

материалом по нелинейной механике. Полученные с помощью специально 

разработанных программ изображения практически невозможно воспроизвести 

вручную. Они отражают точные геометрические преобразования, возникающие 

при конечных деформациях. Авторы считают, что для понимания физического 

смысла тензорных величин желательно не говорить о матрицах коэффициентов. 

Такие матрицы являются компонентами тензора, возникающими при 

представлении его с помощью диад из базисных векторов выбранной системы 

отсчета. Матрицы необходимы преимущественно для реализации 

вычислительных алгоритмов. Однако истинный физический смысл тензорных 

величин становится более понятным, когда их рассматривают как операторы, 

отображающие векторы в новые векторы трехмерного евклидова пространства. 

Такой подход лежит в основе данной работы.  В качестве примера выбрана задача 

моделирования деформаций материала в условиях простого сдвига. 

Испытательная установка неподвижна. Жесткие пластины, которые деформируют 

материал, двигаются поступательно (без поворотов). Тем не менее, все малые 

области материала совершают вращательное движение, эквивалентное повороту 

абсолютно твердого тела. Для специалистов, решающих задачи в условиях малых 

деформаций, это явление может казаться парадоксальным. В то же время оно 

хорошо известно в теории конечных деформаций. Представленные в статье 

пояснения физического смысла тензоров и полученные на компьютере 
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иллюстрации позволяют разрешить это кажущееся противоречие. Тем самым 

подчеркиваются преимущества операторного подхода в преподавании и изучении 

нелинейной теории конечных деформаций.  

Ключевые слова: конечные деформации; простой сдвиг; градиент деформаций; 

вращательное движение материала; тензор вихря; тензор спина. 
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Abstract. In this paper, we develop a physically meaningful and visually grounded 

framework for understanding mechanics of deformable media by combining the operator-

based formulation of tensor calculus with computer graphics. The resulting images presented 

can be used as a powerful educational tool for teaching nonlinear continuum mechanics and, 

additionally, these images are able to accurately depict complex geometric transformations 

induced by finite deformations. Being generated by specialized programs, they cannot be 

reproduced manually.  We believe that a proper understanding of the physical meaning of 

tensors requires moving beyond their definition as simple “matrices of coefficients”, because 

matrices are only the components of a tensor that arise when it is expressed in terms of the 

dyadic products of basis vectors in a chosen coordinate system. Matrices are mainly used in 

computing. However, the true physical meaning of tensors becomes clear when they are 

interpreted as linear operators acting on vectors in three-dimensional Euclidean space. The 

operator-based approach lies at the core of the present work. As a representative example, 

we consider the deformation of a material under simple shear. The testing apparatus is fixed, 

and the rigid plates used to apply shear deformation move translationally, without any 

rotation. Nevertheless, each infinitesimal material element undergoes a rigid-body-like 

rotation. Although this behavior is well known in the context of finite deformation theory, 

it appears paradoxical to researchers accustomed to small strains. The physical interpretation 

of tensors in combination with computer-generated visualizations helps resolve this apparent 

contradiction. The paper clearly demonstrates the pedagogical advantages of the operator-

based approach for teaching and understanding nonlinear theories of finite deformations. 

Keywords: finite deformations; simple shear; deformation gradient; rotational motion; 

vorticity tensor; spin tensor. 
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Введение 

Операторная школа тензорного исчисления рассматривает тензоры второго ранга 

как векторы девятимерного пространства. С этой точки зрения тензоры 

интерпретируются как множество линейных операторов, действующих в трехмерном 

евклидовом пространстве и отображающих один вектор в другой. Композиция из 

нескольких операторов подразумевает то, что сначала выполняется одно 

преобразование, затем – другое, и так далее. В такой записи знак умножения между 

тензорными величинами опускается. Если осуществляется скалярное умножение 

девятимерных векторов, между ними ставится точка – знак скалярного умножения. 

Операторный подход применяется в механике сплошных сред, в частности в работах 

Трусделла [1, 2], Гуртина [3], Свисткова [4] и других авторов. 

При анализе поведения материалов в условиях больших деформаций центральную 

роль играет градиент деформации F [1–8]. Это тензор, преобразующий вектор, 

определяющий взаимное расположение двух близких точек в отсчетной конфигурации, 

в вектор их взаимного расположения в актуальной конфигурации. Для него справедливо 

полярное разложение F = RU = VR, где R – тензор поворота, U и V – правый и левый 

тензоры растяжения. Это разложение позволяет разделить локальное движение 

материала на деформацию и жесткое вращение (поворот как абсолютно твердого тела). 

Однако без наглядной визуализации такие абстрактные конструкции остаются 

малодоступными для восприятия, особенно для исследователей, не 

специализирующихся в нелинейной механике сплошных сред. 

Простой сдвиг [1–3, 5–8] является одним из ярких примеров деформирования 

материала, в котором проявляются локальные вращения при отсутствии поворота всего 

образца. В линейной теории упругости простой сдвиг описывается исключительно 

сдвиговой деформацией в выбранной системе отсчета; при этом нормальные напряжения 

отсутствуют, и вращение материальных элементов деформируемой среды не 

учитывается. Однако при переходе к конечным деформациям картина существенно 

усложняется. Градиент деформации F указывает на два преобразования, которые 

совершаются с малыми элементами среды: растяжение/сжатие и их поворот (или 

наоборот, в зависимости от формы полярного разложения). Это позволяет четко 

различать и физически интерпретировать кинематические характеристики 

вращательного движения, например тензор вихря W  и тензора спина RW  [1–3, 5–8]. 

В настоящей работе предлагается визуально-аналитический инструмент, 

объединяющий операторный подход в механике сплошных сред с наглядностью 

компьютерной графики. Полученные результаты могут быть полезны как при 

обучении основам нелинейной механики сплошных сред, так и при разработке и 

верификации моделей поведения материалов в условиях больших деформаций.  
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1. Градиент деформаций. Полярное разложение 

В данной работе не ставилось задачи давать изложение основных понятий 

операторной школы тензорного исчисления и выкладок нелинейной механики 

деформируемых сред. Соответствующие определения и выводы подробно представлены, 

например, в работах [1–4]. Приведем в статье только некоторые важные пояснения. 

Отметим, что положение материальной точки в отсчетной конфигурации будем 

обозначать радиус-вектором .0x Опишем вокруг этой точки в отсчетной конфигурации 

сферическую поверхность с весьма малым радиусом так, чтобы сама точка находилась в 

ее центре. Эту поверхность образуют материальные точки, «вмороженные» в 

деформируемую среду и движущиеся вместе с ней. Пусть множество векторов 0x  

исходит из выбранной точки, а их концы пробегают все точки сферической 

поверхности. В деформированном состоянии рассматриваемая область приобретает 

иную геометрию. При этом новая геометрия в малой окрестности точки может быть с 

высокой точностью описана с помощью линейного (аффинного) преобразования, 

обозначим его за F (тензор второго ранга). Поверхность полученной геометрической 

фигуры задается множеством векторов ,x  исходящих из той же материальной точки 

среды. Между векторами x  и 0x  существует связь 

...+= 0xFx                                                 (1.0) 

где многоточием обозначены члены более высокого порядка малости. Иными словами, 

F представляет собой производную векторной функции по векторному аргументу: 

0x

x
F




= .                                                           (1.1) 

Тензор F называется градиентом деформации. При этом положение материальных точек 

x в текущий момент времени в формуле (1.1) должно быть функцией радиус-векторов 

,0x  «вмороженных» в сплошную среду, и текущего момента времени t: ( )0 , xxx t= . 

Благодаря линейному преобразованию F, сферическая окрестность в отсчетной 

конфигурации переходит в эллипсоид в текущей конфигурации (рис. 1). На 

иллюстрации приведены рисунки с использованием безразмерных геометрических 

величин. То есть все геометрические размеры поделены на радиус R, выделенной в 

материале малой сферы в отсчетном состоянии. У эллипсоида имеются три главные 

полуоси. Обозначим правую ортонормированную тройку векторов, определяющих их 

направления, символами 321 nnn ,,  (рис. 1, б). Векторы, соединяющие центр эллипсоида 

с его вершинами равны 11n , 22n , 33n . Символами 321  ,, обозначены кратности 

удлинения. Они рассчитываются как отношения длин главных полуосей эллипсоида к 

радиусу исходной сферы R и являются безразмерными величинами. 

Применяя обратное преобразование 
1−

F к градиенту деформации F , можно 

получить тройку векторов 
0
3

0
2

0
1 nnn ,, :  

3
10

32
10

21
10

1 nFnnFnnFn
−−− === ,, .                            (1.2) 

Эти векторы изображены на рис. 1, а. Данная иллюстрация подсказывает, как 

естественным образом ввести тензоры, описывающие как жесткие повороты малых 

областей среды, так и их деформации. Можно показать, что векторы 
0
3

0
2

0
1 nnn ,,  также 

образуют ортонормированную тройку. 
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Известно, что градиент деформации всегда может быть представлен в виде: 

0
3

1

ii

i

i nnF =
=

                                                                     (1.3) 

и справедливы выражения: 0
iii Fnn = , ( )321 ,,i =  и 

 
.ii

i i

nnF =
=

− 0
3

1

1 1


 

 

а б 

Рис. 1. Иллюстрация, поясняющая введение понятия градиента деформации. Сферическая область 

(рис. а) переходит в область, имеющую форму эллипсоида (рис. б). Геометрия изображена в 

безразмерных величинах: все размеры нормированы на радиус сферы R в отсчетной конфигурации 

Действие оператора F можно также проиллюстрировать с помощью рис. 2, 

отражающего фундаментальный принцип разделения движения сплошной среды на 

жесткое вращение и деформацию. Из отсчетного состояния A в текущее состояние C 

можно попасть двумя путями: через промежуточное состояние B или через 

промежуточное состояние D. Это означает, что можно сначала повернуть исходную 

сферу с помощью оператора поворота R (переход в состояние B), а затем растянуть 

полученный объект оператором V. Либо сначала растянуть сферу оператором U, получив 

эллипсоид, а затем повернуть его тем же оператором поворота R.  

Тензоры V, U и R имеют следующий вид: 

i

i

iii

i

iii

i

i ,, nnRnnUnnV === 
===

3

1

000
3

1

3

1

 ,                                        (1.4) 

скаляры 321  ,,  являются собственными значениями тензоров V и U, а 

соответствующие ортонормированные тройки векторов 321 nnn ,,  и 
0
3

0
2

0
1 nnn ,,

 
– их 

собственными векторами: ( )32100 ,,i,, iiiiii === nUnnVn  . 

 

Рис. 2. Иллюстрация, поясняющая введение тензоров, описывающих деформацию и вращение 

сплошной среды 

Непосредственной подстановкой легко убедиться, что градиент деформации 

выражается через эти тензоры в виде: 



К. А. Мохирева, А. Л. Свистков 

34 

RUVRF == .                                                        (1.5) 

Соотношение (1.5) называется полярным разложением градиента деформации. Тензор R 

является тензором поворота. Он преобразует тройку векторов 
0
3

0
2

0
1 nnn ,,  в тройку

321 nnn ,, , то есть ( ).,,i,ii 3210 == Rnn  

2.  Деформация материала в условиях простого сдвига 

Очень наглядным для получения представлений об основных понятиях механики 

является пример деформирования материала в условиях простого сдвига. Его имеет 

смысл рассматривать на лекциях по нелинейной механике деформируемых сред. 

Иллюстрации, полученные с помощью компьютерных рисунков, дают наглядные 

картинки о действии основных операторов. Речь идет о тензоре поворота, тензоре 

растяжения, деформационном градиенте, тензоре скоростей деформирования, тензоре 

вихря, тензоре спина. При исследовании на простой сдвиг эластомерных материалов 

применяется конструкция, в которой четыре одинаковых образца приклеиваются к 

специально обработанным жестким пластинам. Эта конструкция показана на рис. 3а. В 

центральной части каждого образца реализуется практически однородное 

напряженно-деформированное состояние. Если пластины являются достаточно 

длинными, то области с неоднородным состоянием будут составлять малую часть и 

вносить погрешности, соизмеримые с погрешностями эксперимента. 

Рассмотрим один из этих образцов. Он помещен между двумя горизонтальными 

жесткими пластинами испытательной установки (рис. 3, б) и прочно приклеен к ним. Для 

описания деформаций используется прямоугольная декартова система координат. 

Нижняя пластина неподвижна, верхняя смещается в горизонтальной плоскости вдоль 

первой координатной оси. При этом расстояние между пластинами остается неизменным 

– это характерная особенность простого сдвига (в отличие от чистого сдвига, где это 

условие не выполняется). Количественной мерой сдвига служит параметр: 

b/a= ,                                                             (2.0) 

где a – горизонтальное смещение верхней пластины, b – начальное расстояние между 

пластинами. 

 

а 

 

 

 

 

б 

Рис. 3. Схемы деформирования эластомерного материала в условиях простого сдвига 

 

В образце устанавливается однородное деформированное состояние. Особенности 

возникающих деформаций можно наглядно представить, проследив за превращением 
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сферической области, мысленно выделенной внутри образца (рис. 4, а). Для удобства на 

поверхность сферы нанесены меридианы и параллели. Градиент деформации в данном 

случае имеет вид: .31 iiIF +=   Разлагая радиус-векторы x  и 0x  по базису 

прямоугольной декартовой системы, получаем изменения положения точек среды в 

однородно нагруженном образце  

0Fxx =                                                            (2.1) 

в виде зависимости: ( ) ( ) .xxxxxx
i

i

i

i 3
0
32

0
21

0
3

0
1i

3

1

0
31i

3

1

iiiiiiIi +++=









+= 

==

   

Таким образом, точки среды смещаются в горизонтальной плоскости в 

направлении вектора ,1i  причем величина смещения пропорциональна начальной 

координате ;0
3x  коэффициент пропорциональности равен .  

Далее приведены иллюстрации, построенные для значения = 1.5. Левый и правый 

тензоры растяжения, а также тензор поворота вычисляются по формулам: 

.,, FVRFFUFFV 1Т2Т2 −===                                     (2.2) 

Рассмотрим малую сферическую область с центром в точке :0x  начало векторов 

0x  лежит в центре сферы, а их концы описывают сферическую поверхность (рис. 4, а). 

Под действием градиента деформации F эта область преобразуется в эллипсоид, 

показанный на рис. 4, б. Можно также рассмотреть преобразование той же сферы с 

помощью левого тензора растяжения: .0xVx =  Такое преобразование сферы дает 

эллипсоид, изображенный на рис. 4, в.  

На первый взгляд оба эллипсоида выглядят одинаково, однако, это не так. В первом 

случае (рис. 4, б) параллели остаются в тех же горизонтальных плоскостях, что и до 

деформации; во втором случае (рис. 4, в) они оказываются на наклонных плоскостях. 

Следовательно, операторы F и V  задают разные преобразования, несмотря на внешнее 

сходство очертаний границ. Чтобы получить полное совпадение, необходимо «вернуть» 

параллели и меридианы в правильное положение. Это достигается следующим образом: 

сначала поворачиваем исходную сферу с помощью тензора R (рис. 2), а затем 

растягиваем полученный объект левым тензором растяжения V  (рис. 2). Так 

реализуется полярное разложение .VRF =  Можно поступить иначе: осуществить 

сначала растяжение, определяемое правым тензором растяжения ,U  а затем поворот с 

помощью тензора R (рис. 2). Указанные преобразования исходной сферической области 

осуществляются последовательно. Правый тензор растяжения U  также формирует 

эллипсоид той же формы, что и градиент деформации F; различие заключается лишь в 

ориентации полученного эллипсоида в пространстве. 

Отметим, что материал, деформированное состояние которого однородно по всему 

объему образца, нагружается с помощью неподвижной экспериментальной установки. 

Реализуются условия простого сдвига. Закрепленный в ней образец не совершает 

вращения как абсолютно твердое тело: его верхняя и нижняя границы остаются строго 

горизонтальными (рис. 3). Тем не менее, малые материальные области внутри образца 

испытывают локальное вращение. 
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а 

  

б в 

Рис. 4. Геометрии малой сферической области материала а) в отсчетном 

(недеформированном) состоянии и б), в) в условиях простого сдвига. Преобразование 

точек сферической области материала происходит с помощью: б) градиента деформаций 

( )0xFx =  и в) левого тензора растяжений ( )0xVx =  

3.  Тензор скоростей деформации и тензор вихря 

Материальная производная градиента деформации по времени F  может быть 

выражена через производные главных растяжений и производные собственных векторов 

тензоров U  и V , возникающих в полярном разложении согласно формуле (1.5). С более 

подробными выкладками можно ознакомиться в работах [1–4]. Соответственно, 

комбинация 1−
FF естественным образом распадается на части, связанные с изменением 

длин (растяжений) и с вращением материальных элементов. Теперь рассмотрим 

скалярное произведение тензора kkk nn   и тензора 1−
FF : 

( ) .k

i i j
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j
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Разложим тензор 1−
FF  на симметричную D  и антисимметричную W части: 

,WDFF +=−1                                                   (3.1) 

где ( ) 




 += −− T11

2

1
FFFFD   и ( ) TT11

2

1
WWFFFFW −=





 −= −− , , тогда выполняется: 

.kkkkkkk DnnFFnn == −  1                                (3.2) 

Тензор D  называется тензором скоростей деформации (первое название, 

используемое в работах [1–4]) или тензор деформации скорости (второе название, 

упоминаемое в работах [6–8]), а W – тензор вихря. Важной особенностью тензоров D  и 

W  является их независимость от выбора отсчетной конфигурации [1–3, 7].  

Пусть в отсчетный момент времени 0t  положение материальных точек континуума 

определяется радиус-вектором .0x  Определяемое в пространстве положение 

материальных точек сплошной среды будем называть отсчетной конфигурацией. В 

другой момент времени 1t  положение материальных точек континуума определяется 

радиус-вектором .1x  Считаем, что момент времени 1t  наступает после момента времени 

,t0  то есть 01 tt  . Будем рассматривать момент времени 1t  как момент, в котором 

задается новая конфигурация с помощью радиус-векторов материальных точек 

континуума .1x  Будем называть ее новой отсчетной конфигурацией. 

В текущий момент времени радиус-векторы материальных точек являются 

функциями времени t и радиус-векторов в одной из отсчетных конфигураций. При этом 

можно использовать как конфигурацию, связанную с моментом времени 0t , так и с 

моментом 1t . Должны существовать функции: ( ) ( )0011 xxxxxx ,t,,t == . 

Рассмотрим две близко расположенные точки в начальный момент времени 0t , их 

взаимное расположение определяет вектор .0x  Считаем, что текущий момент времени 

t наступает после момента времени 1t . Изменения положения в пространстве двух близко 

расположенных точек определяются градиентами деформации 0F и 1F : 

,, 00111001 xFFxFxxFx ===                                        (3.3) 

где ( ) ( ) .t,t 00110111  , , xxxFxxxF ==  Это означает, что градиент деформации, 

связывающий текущее положение точек с их положением в отсчетный момент времени  

0t , имеет вид 01FFF = . При этом градиент деформации 0F  не зависит от времени t, то 

есть его материальная производная по времени равна нулю: .00 =F  

Разность скоростей v  двух близко расположенных материальных точек 

сплошной среды может быть представлена через градиент скорости в текущей 

(актуальной) конфигурации с точностью до величин второго порядка малости:  

...,...grad 1 +=+= −
xFFxvv                                       (3.4) 

где x – расстояние между близко расположенными точками в момент времени t в 

текущей конфигурации.  

Далее будем рассматривать формулы в новой отсчетной конфигурации, 

соответствующей положению материальных точек в момент времени 1t . Обозначим 

через x  вектор, соединяющий две близкие точки деформируемой среды в момент 
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времени t, отделенной от момента времени 1t  на малый отрезок 1ttt −= . На основании 

формул (3.1), (3.3), (3.4) и определения градиента деформации имеем 

( ) ,ttt +=== −
001

1
xFFWDxFFvx                                         (3.5) 

где 0x  – вектор, соединяющий те же точки в исходной отсчетной конфигурации 

момент 0t . Применим полярное разложение к градиенту деформации 111 RVF = . 

Для вычисления тензоров скорости деформации и вихря рассмотрим выражение: 

( ) ( )( ) 1
111111

1
11

−−•
+= RVRVRVFF  .                                           (3.6) 

Устремляя 0→t , получаем значения тензоров  

.,
tt

IRIV ==
→→

1
0

1
0

limlim                                              (3.7) 

где I – единичный тензор. В предельном переходе выражение (3.6) примет вид:  

( ) 11
1

11
0

lim RVFF  +=
−•

→t
.                                             (3.8) 

С учетом формулы (3.1) и инвариантности тензоров D  и W  относительно выбора 

отсчетной конфигурации приходим к выводу, что 

( ) 1
T

11111 50 RRRWWVDD  =−==== ., .                                       (3.9) 

В формуле (3.9) учтено то, что тензор T
11RR является антисимметричным, и для малого 

интервала времени при ,t 0→  выполняется равенство .IR 1  Это означает 

антисимметричность тензора .1R  

Полученный результат объясняет причину появления названия «тензор скоростей 

деформации» у оператора .D  Связано это с тем, что он является материальной 

производной по времени от тензора ,1V  который фиксирует изменение геометрии малых 

областей сплошной среды за интервал времени ∆t. При этом изменение геометрии малых 

областей происходит в результате деформирования материала, а не его жесткого 

движения. В свою очередь, вращательное движение малых областей в данный момент 

времени характеризует тензор вихря .W  Если сплошная среда является идеальной или 

вязкой жидкостью, то к ней невозможно применить понятие деформации материала. 

Поэтому о вращательных движениях малых областей жидкости можно судить только с 

помощью тензора .W  Этот факт послужил основой для появления понятия «тензор 

вихря». 

Иллюстрация изменений малой сферической области показана на рис. 5. В 

отсчетном состоянии выбираем малую сферическую область материала. Эта область 

отмечена на рисунке буквой A. Выбор области осуществляется в момент времени 0t . С 

помощью градиента деформации 0F  рассматриваемая сфера преобразуется в эллипсоид, 

отмеченный на рисунке буквой B. Эллипсоид представляет геометрию выбранной 

области в фиксированный момент времени .t1  Последующий за ним текущий момент 

времени t  наступает далее через малый промежуток времени t . Отмеченные буквами 

C и D фигуры необходимы для иллюстрации особенностей перехода от геометрии 

выбранной области в момент времени 1t  к геометрии в текущий момент времени t . Для 

сравнения за этими фигурами серым фоном показан контур области, который был в 

момент времени 1t . 
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Переход от геометрии в момент 1t  к геометрии в момент времени t  определяет 

градиент деформации 111 RVF = . С учетом малости интервала времени t  и равенств 

(3.9) имеем с точностью до величин второго порядка малости связь: 

( )( ) ( )( ).tttttt
tt

++=++=






 +






 +=
→→

111111
0

11
0

1 limlim WIDIRIVIRRVVF 
 

Буквой C на рис. 5 показана геометрия рассматриваемой области, которая 

получается при переходе фрагмента среды из состояния B в новое состояние с помощью 

оператора t+DI . Оператор tD  определяет изменение деформации за интервал 

времени Δt. В свою очередь, буквой D показана новая геометрия, которая получается при 

переходе из состояния B в новое состояние с помощью оператора t+ WI . Оператор 

tW  определяет дополнительное вращение материала за интервал времени Δt. 

 

Рис. 5. Изменение малого сферического объема сплошной среды. Показаны иллюстрации действия 

следующих операторов: 0F  – оператор, определяющий переход материала из отсчетного 

состояния в состояние, соответствующее моменту времени 1t ; t+ DI  – оператор, 

определяющий переход в новое деформированное состояние материала за малый интервал времени 

Δt; t+ WI  – оператор, определяющий изменение положения области в результате поворота при 

переходе в новое состояние 

4. Тензор спина. Отличие от тензора вихря 

Часто в формулах механики деформируемых сред используется тензор спина 
T

R RRW = [7, 8]. Он возникает, когда вычисляется материальная производная от 

собственного вектора in  левого тензора растяжений .V  Используем для определения 

производной запись его с помощью тензора поворота R  и собственного вектора 
0
in  

правого тензора растяжений .U  Выведем соответствующую формулу для скорости 

изменения вектора in : 

( ) 000
iiii nRnRRnn  +==

•
.                                               (4.0) 

Учтем, что обратный тензор 1−
R  к тензору поворота равен транспонированному :TR   

( ) ( ) ( ) .iiiiiiii
0

R
0T00T0

nRnWnRnRRnRnRRRRnn  +=+=+==
•

                (4.1)  
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Таким образом, приходим к выводу, что имеются две причины изменения 

направления собственного вектора левого тензора растяжения in . Это его вращение в 

результате поворота (слагаемое inWR  в формуле (4.1)) и изменение направления 

деформирования материала (слагаемое 
0
inR  ), которое определяется в отсчетной 

конфигурации правым тензором растяжений U . 

Важно отметить еще одну особенность. Снова рассмотрим новую отсчетную 

конфигурацию, которая определяется в момент времени 1t  с помощью радиус-векторов 

материальных точек континуума 1x . Поворот среды, который отражается с помощью 

тензора спина, можно представить последовательностью двух поворотов. Учитывается 

это формулой: ,01RRR =  где 1R  – тензор спина, учитывающий поворот малой области 

материала за интервал времени от 1t  до t; 0R  – тензор спина, учитывающий поворот 

малой области материала за интервал времени от 0t  до 1t . При этом тензор 1R  является 

функцией текущего момента времени t и радиус-вектора центра выбранной области в 

отсчетном состоянии .0x  В свою очередь, тензор 0R  является функцией момента 

времени 1t  и радиус-вектора центра выбранной области в отсчетном состоянии 0x : 

( ) ( ).,t,,t 0100011 xRRxRR ==                                                       (4.2) 

Поэтому материальная производная от тензора 0R  по времени равна нулю: .00 =R Это 

означает выполнение равенства: 

( ) ( ) ( )( ) .1
R

T
11

T
1

T
001

T
0101R WRRRRRRRRRRW ====

•                             (4.3) 

Следовательно, тензор спина ,RW  так же, как и тензор скоростей деформации D  и 

тензор вихря W , не зависит от выбора отсчетной конфигурации. В этом их отличие от 

тензоров, определяющих деформации материала. Левый V  и правый U  тензоры 

растяжений, левый B и правый C тензоры растяжений Коши–Грина [1–8] определяют 

искажение геометрии фрагментов сплошной среды относительно начального состояния.  

Однако при моделировании упругопластических и вязко-упругопластических сред 

отсчет для упругих деформаций выполняется относительно конфигурации с 

накопленными пластическими деформациями. То есть, речь идет о конфигурации, 

изменяемой во времени. В этом случае тензор поворота plR  в полярном разложении 

градиента пластических деформаций зависит от времени. Поэтому тензор пластического 

спина: 
T
plpl

pl
R RRW =  может отличаться от тензора спина RW . 

Два тензора дают информацию об особенностях вращений сплошной среды – это 

тензор вихря W  и тензор спина RW . Связь между тензора задается формулой [1–3, 7]: 

,WWW += R                                                                          (4.4) 

где в качестве удобства обозначения принимается ( ) .T1-1-

2

1
RUUUURW  −=   

Приведенное соотношение (4.4) позволило показать существенное отличие между 

тензором вихря RW  и тензором спина W . Для лучшего понимания связи между этими 

тензорными величинами следует установить, в каких случаях тензоры совпадают. 

Происходит это в условиях, когда выполняются равенства: .00
3

0
2

0
1 === nnn   Это значит, 
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что собственные векторы правого тензора растяжений U  остаются неизменными. 

Меняются только собственные значения этого тензора. Используем представление 

правого тензора растяжений через собственные векторы и собственные значения. В 

рассматриваемом случае выполняется равенство: 

.
i

iii

i

iii

i

iii

i

iii 0
3

1

00

1
3

1

00

1
3

1

00
3

1

001-1- =




















−





















=− 

=

−

=

−

==

nnnnnnnnUUUU    (4.5) 

Поэтому формула (4.4) превращается в связь .RWW =  В такой ситуации указанные 

тензоры определяют скорость вращения точек материала при жестком движении 

сплошной среды. 

Как было отмечено ранее, согласно формуле (4.4), тензор вихря W  является 

суммой двух слагаемых, имеющих разный физический смысл. Одно слагаемое отражает 

особенности жесткого вращения малых фрагментов сплошной среды (тензор RW ). 
Второе слагаемое учитывает появление вращения в результате деформирования 

материала (тензор W ). Возникает деформационное вращение в случае изменения во 

времени направлений собственных векторов 
0
3

0
2

0
1 nnn ,,  правого тензора растяжений U . 

Далее рассмотрим примеры вращательного движения малой области, выделенной 

в материале, с помощью иллюстраций. Обратимся к деформированию образца в 

условиях простого сдвига. Использованы расчеты для значения параметра  =1.5 (рис. 3, 

б) и его материальной производной по времени t =1.5. Рассматривается малая сфера, 

множество точек, поверхности которой пробегает вектор x , выходящий из центра 

сферы и имеющий длину R. Выделение сферы осуществлено в уже деформированном 

состоянии в момент времени .t1  На рис. 6 показана иллюстрация действия тензора вихря 

W  и тензора спина .RW  Из точек поверхности сферы отложены векторы s согласно 

следующим формулам. Для иллюстраций действия тензора спина RW  (рис. 6, а) и 

тензора вихря W (рис. 6, б) использованы формулы: 

.Rt,Rt  == xWsxWs R                                                         (4.6) 

Пример представления тензора вихря W  в виде суммы тензоров вращательного 

жёсткого движения (тензор RW ) и деформационного вращения (тензор W ) показан на 

рис. 6, в. Все векторы s  располагаются в плоскости, перпендикулярной второй оси, 

обозначенной на рис. 3, б. При этом, как нетрудно доказать, векторы s  всегда 

перпендикулярны векторам .x  Следует это из антисимметричности тензоров W  и 

W  и правил тензорной алгебры:  

 −== xxWxxWxWx
T ,                                      (4.7) 

то есть  −= xWxxWx . А это возможно только при условии 

.0=  xWx                                                         (4.8) 

Аналогично доказывается ортогональность и при рассмотрении случая использования 

тензора RW . 
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Рис. 6. Иллюстрация отличия тензоров 
R

W и W  в условиях простого сдвига с помощью векторов 

s , начала которых расположены на сферической поверхности. Для вычисления вектора s  

применяются формулы: а) Rt = xWs R  и б) Rt = xWs . Схематичное изображение 

каждого из тензоров, использованных для вычисления векторов (рис. в) 

 

Более подробные пояснения даются на рис. 7. В начальный момент времени 0t  

выбрана область в виде малой сферы в материале. Положение точек ее поверхности 

относительно центра сферы определяет радиус-вектор .0x  На сферу нанесены 

меридианы и параллели, чтобы фиксировать ее ориентацию в пространстве. В начальном 

состоянии положение сферы отмечено на рисунке символом A. С помощью оператора 

0R  происходит поворот векторов .0x  На рисунке это положение сферы, отмеченное 

символом B. Дальнейший поворот за малый интервал времени Δt осуществляется 

оператором .t+ RWI  Все указанные повороты иллюстрируют последовательность 

формирования тензора R , который входит в полярное разложение градиента 

деформации F , то есть ( ) .t 0R RWIR +=  
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Рис. 7. Иллюстрация поворотов малой сферической области материала в условиях простого 

сдвига. При жестком движении осуществляется переход от состояния A к состоянию B и далее к 

C. Для иллюстрации вихревого вращения необходимо использовать другую сферу, которая 
выделяется в уже деформированном материале (состояние D). Операторы, которые были 

использованы для вычисления векторов, подписаны около соответствующих изображений. 

Подробности в тексте 

Для иллюстрации действия оператора вихря W  нужно использовать другую 

сферу. Она выделяется в уже деформированном материале в момент времени 1t . Это 

состояние отмечено на рисунке символом D. Чтобы стало понятно, что мы используем 

другую область, на ней нанесены другие параллели и меридианы. Радиус-вектор, 

определяющий поверхность сферы, обозначен символом x . Иллюстрация векторов, 

характеризующих скорости вращений, представлена набором стрелок. Для вычисления 

этих векторов использованы формулы, приведенные рядом с соответствующими 

изображениями. 

Рассмотренная задача о простом сдвиге и приведенные иллюстрации могут 

служить полезным дополнением к формулам при объяснении физического смысла 

тензорных величин, используемых в механике сплошной среды. 

Выводы 

В настоящей статье рассмотрена классическая задача простого сдвига – одно из 

ключевых напряженно-деформированных состояний, позволяющее наглядно 

продемонстрировать особенности поведения сплошной среды при конечных 

деформациях. Предложено пользоваться представлениями о тензорах, как об операторах 

(операторная школа тензорного исчисления) и раскрывать физический смысл тензоров 

на примерах преобразования малой сферической области материала, а также с помощью 

специально выбранных векторов на ее поверхности. Приведены примеры действия 

тензоров градиента деформации, поворота и растяжения. Компьютерные иллюстрации 

наглядно показывают интересное поведение материала. Испытательная установка стоит 

неподвижно. Образец деформируется без поворотов. Но все области материала образца 

испытывают вращение как абсолютно твердое тело. 

При рассмотрении на примере процесса вращения малых областей материала в 

условиях простого сдвига выясняется физический смысл понятий «тензор скоростей 

деформации» и «тензор вихря». Компьютерные изображения позволяют 

продемонстрировать отличие тензора вихря от тензора спина. Тензор вихря указывает на 
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сумму скоростей вращения как абсолютно твердого тела и вращения, вызванного 

деформациями. Приведенные в статье иллюстрации представляют интерес для 

исследователей, изучающих нелинейную механику материалов. Их можно эффективно 

использовать в учебном процессе для наглядного объяснения и лучшего понимания 

задач математического моделирования поведения деформируемых сред. 
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