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сываемая системой обыкновенных дифференциальных уравнений и общим многото-

чечным критерием качества. Область управления объектом является выпуклым огра-

ниченным множеством. Вычислена формула второго порядка приращения функцио-

нала, соответствующая двум допустимым управлениям. С помощью этого прираще-

ния впервые доказан аналог линеаризованного принципа максимума Л. С. Понтря-

гина. Далее исследован случай вырождения линеаризованного принципа максимума 

(квазиособый случай). Установлены интегральные поточечные необходимые условия 

оптимальности квазиособых управлений, носящие конструктивный характер.   
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Abstract. A non-standard optimal control problem governed by a system of ordinary dif-

ferential equations with a general multi-point quality criterion is analyzed. The control do-

main represents a convex and bounded set. We derive a second-order formula for the incre-

ment of the functional associated with two admissible controls. This result allows us to 

prove an analogue of the linearized maximum principle introduced by L. S. Pontryagin. 

Furthermore, we investigate the case when this principle degenerates into what is known as 

the quasi-singular scenario. Finally, integral pointwise necessary conditions ensuring the 

optimality of such quasi-singular controls are formulated in a constructively applicable 

form. 
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Введение 

В монографии [1] Н. Н. Моисеев рассмотрел задачу оптимального управления, ди-

намика которой описывался одной системой обыкновенных дифференциальных уравне-

ний и нетиповым функционалом качества. Для рассматриваемой задачи оптимального 

управления он доказал необходимое условие оптимальности в форме принципа макси-

мума Л.  С. Понтрягина [2, 3]. 

В предлагаемой работе рассматривается аналогичная задача оптимального управ-

ления, но с более общим многоточечным функционалом качества, где область управле-

ния является выпуклым ограниченным множеством. Учитывая специфические особен-

ности функционала качества, в отличие от известных работ (см., например, [1–5]), сопря-

женная функция введена как решение линейного интегрального уравнения типа Воль-

терра, что позволила построить общую формулу приращения критерия качества при ме-

нее жестких ограничениях. Доказан аналог линеаризованного принципа максимума [4]. 

Отдельно рассмотрен случай его вырождения (квазиособый случай) [5–8]. Применяя ана-

лог схему вывода необходимых условий оптимальности квазиособых управлений из ра-

бот [7, 8], получены интегральное и поточечное необходимые условия оптимальности 

квазиособых управлений, позволяющие сузить множество допустимых управлений, по-

дозрительных на оптимальность. 
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1. Постановка задачи 

Пусть управляемый непрерывный процесс на заданном отрезке времени 𝑇 = [𝑡0, 𝑡1] 
описывается задачей Коши для системы нелинейных обыкновенных дифференциальных 

уравнений  

𝑥̇(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)),       𝑡 ∈ 𝑇,                                                     (1.1) 

𝑥(𝑡0) = 𝑥0.                                                                          (1.2) 

Предполагается, что заданная n-мерная вектор-функция 𝑓(𝑡, 𝑥, 𝑢), непрерывна по 

совокупности переменных вместе с частными производными по (𝑥, 𝑢)  до второго по-

рядка включительно, 𝑥0 − заданный постоянный n-мерный вектор, 𝑢(𝑡) − 𝑟 -мерный, ку-

сочно-непрерывный вектор управляющих воздействий со значениями из заданного непу-

стого, ограниченного и выпуклого множества 𝑈 ⊂ 𝑅𝑟 (область управления), т.е. 

𝑢(𝑡) ∈ 𝑈 ⊂ 𝑅𝑟 , 𝑡 ∈ 𝑇.                                                           (1.3) 

Каждую управляющую функцию 𝑢(𝑡), удовлетворяющую этим требованиям, назо-

вем допустимым управлением.  

Считается, что при каждом заданном допустимом управлении задача Коши (1.1)–

(1.2) имеет единственное непрерывное и кусочно-гладкое решение (т.е. производная ре-

шения задачи Коши кусочно-непрерывная вектор-функция с конечным числом точек раз-

рыва первого рода). 

Через 𝑇𝑖, 𝑖 = 1, 𝑘̅̅ ̅̅̅ (𝑡0 < 𝑇1 < 𝑇2 < ⋯ < 𝑇𝑘 ≤ 𝑡1) − обозначим заданные точки. 

Пусть 𝜑(𝑥1, … , 𝑥𝑘) − заданная, дважды непрерывно дифференцируемая скалярная 

функция, а 𝐹(𝑡, 𝑠, 𝑎, 𝑏) − заданная скалярная функция, непрерывная по совокупности пе-

ременных вместе с частными производными по (𝑎, 𝑏) до второго порядка включительно. 

На решениях задачи Коши (1.1)–(1.2), порожденных всевозможными допустимыми 

управлениями, определим функционал  

𝐽(𝑢) = 𝜑(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘)) + ∫ ∫ 𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))𝑑𝑠

𝑡1

𝑡0

𝑑𝑡

𝑡1

𝑡0

               (1.4) 

и рассмотрим задачу о нахождении минимального значения функционала (1.4) при огра-

ничениях (1.1)–(1.3). 

Заметим, что некоторые практические задачи оптимального управления c нетипо-

вым критерием качества перечислены в монографии [1]. В частности, задачи оптималь-

ного управления с нетиповым критерием качества возникают в задачах оптимального 

синтеза. 

Некоторые задачи оптимального управления, с нетиповым функционалом качества 

исследованы в работах [9–11]. 

Допустимое управление 𝑢(𝑡), доставляющее минимальное значение функционалу 

(1.4), при ограничениях (1.1)–(1.3), назовем оптимальным управлением, а соответствую-

щий процесс (𝑢(𝑡), 𝑥(𝑡)) – оптимальным процессом.  

Задача заключается в нахождении необходимых условий оптимальности первого и 

второго порядков в рассматриваемой задаче оптимального управления.  

 

2. Специальная формула приращения второго порядка функционала  

Пусть (𝑢(𝑡), 𝑥(𝑡)) и (𝑢̅(𝑡) = 𝑢(𝑡) + ∆𝑢(𝑡), 𝑥̅(𝑡) = 𝑥(𝑡) + ∆𝑥(𝑡)) − некоторые допу-

стимые процессы.  
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Тогда приращение 𝛥𝑥(𝑡)  траектории 𝑥(𝑡)  будет решением следующей задачи 

Коши: 

∆𝑥̇(𝑡) = 𝑓(𝑡, 𝑥̅(𝑡), 𝑢̅(𝑡)) − 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)),                                        (2.1) 

∆𝑥(𝑡0) = 0.                                                                       (2.2) 

Введем аналог функции Понтрягина: 

𝐻(𝑡, 𝑥, 𝑢, 𝜓) = 𝜓′𝑓(𝑡, 𝑥, 𝑢), 

где штрих (') операция транспонирования, а 𝜓(𝑡)  пока произвольная n-мерная вектор-

функция. 

Учитывая введенные обозначения и выражение аналога функции Понтрягина, при-

ращение функционала (1.4) можно представить в виде 

𝐽(𝑢̅) − 𝐽(𝑢) = 𝜑(𝑥̅(𝑇1), 𝑥̅(𝑇2), … , 𝑥̅(𝑇𝑘)) − 

−𝜑(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘)) + ∫ ∫ (𝐹(𝑡, 𝑠, 𝑥̅(𝑡), 𝑥̅(𝑠)) − 𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))) 𝑑𝑠

𝑡1

𝑡0

𝑑𝑡

𝑡1

𝑡0

+ 

+ ∫ 𝜓′(𝑡)∆𝑥̇(𝑡)𝑑𝑡

𝑡1

𝑡0

− ∫ [𝐻(𝑡, 𝑥̅(𝑡), 𝑢̅(𝑡), 𝜓(𝑡))

𝑡1

𝑡0

− 𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))]𝑑𝑡.     (2.3)  

Используя формулу Тейлора, после некоторых преобразований, из формулы прира-

щения (2.3) получаем, что  

𝐽(𝑢̅) − 𝐽(𝑢) = ∑
𝜕𝜑′(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖

𝑘

𝑖=1

𝛥𝑥(𝑇𝑖) + 

+
1

2
∑ ∑ 𝛥𝑥′(𝑇𝑖)

𝜕𝜑′(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖𝜕𝑥𝑗

𝑘

𝑗=1

𝑘

𝑖=1

𝛥𝑥(𝑇𝑗) + 𝑜1 ([∑‖𝛥𝑥(𝑇𝑖)‖

𝑘

𝑖=1

]

2

) + 

+ ∫ 𝜓′(𝑡)∆𝑥̇(𝑡)𝑑𝑡

𝑡1

𝑡0

− ∫
𝜕𝐻′(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑥
𝛥𝑥(𝑡)

𝑡1

𝑡0

𝑑𝑡 − 

−
1

2
∫ [𝛥𝑥′(𝑡)

𝜕𝐻′(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑥2
𝛥𝑥(𝑡) +

𝑡1

𝑡0

 

+ 2𝛥𝑢′(𝑡)
𝜕𝐻′(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢𝜕𝑥
𝛥𝑥(𝑡) + 𝛥𝑢′(𝑡)

𝜕𝐻′(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢2
𝛥𝑢(𝑡)] 𝑑𝑡 − 

− ∫ 𝑜2[(‖∆𝑥(𝑡)‖ + ‖∆𝑢(𝑡)‖)2]𝑑𝑡

𝑡1

𝑡0

+ ∫ ∫ [
𝜕𝐹′(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎
𝛥𝑥(𝑡)

𝑡1

𝑡0

𝑡1

𝑡0

+ 

+
𝜕𝐹′(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏
𝛥𝑥(𝑠)] 𝑑𝑠𝑑𝑡 + 

+
1

2
∫ ∫ [𝛥𝑥′(𝑡)

𝜕𝐹 (𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎2
𝛥𝑥(𝑡) +

𝑡1

𝑡0

𝑡1

𝑡0

2𝛥𝑥′(𝑡)
𝜕𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎𝜕𝑏
𝛥𝑥(𝑠) + 
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+𝛥𝑥′(𝑠)
𝜕𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑏2
𝛥𝑥(𝑠)] 𝑑𝑠𝑑𝑡 + 

+ ∫ ∫ 𝑜3([‖∆𝑥(𝑡)‖ + ‖∆𝑥(𝑠)‖]2)𝑑𝑠

𝑡1

𝑡0

𝑑𝑡

𝑡1

𝑡0

.                                     (2.4) 

Ясно, что  

𝛥𝑥(𝑡) = ∫ 𝛥𝑥̇(𝜏)𝑑𝜏

𝑡

𝑡0

.                                                  (2.5) 

Из формулы (2.5) получаем, что  

∆𝑥(𝑇𝑖) = ∫ 𝛼𝑖(𝑡)𝛥𝑥̇(𝑡)𝑑𝑡

𝑡1

𝑡0

.                                                   (2.6) 

Здесь 𝛼𝑖(𝑡) характеристическая функция отрезка [𝑡0, 𝑇𝑖]. 
Используя, формулы (2.5) и (2.6) формула приращения (2.4) может быть представ-

лено в виде 

𝐽(𝑢̅) − 𝐽(𝑢) = ∫ ∑ 𝛼𝑖(𝑡)
𝜕𝜑′(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖

𝑘

𝑖=1

𝑡1

𝑡0

𝛥𝑥̇(𝑡)𝑑𝑡 + 

+
1

2
∑ ∑ 𝛥𝑥′(𝑇𝑖)

𝜕2𝜑(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖𝜕𝑥𝑗
𝛥𝑥(𝑇𝑗)

𝑘

𝑗=1

𝑘

𝑖=1

+ 𝑜1 ([∑‖𝛥𝑥(𝑇𝑖)‖

𝑘

𝑖=1

]

2

) + 

+ ∫ 𝜓′(𝑡)𝛥𝑥̇(𝑡)𝑑𝑡

𝑡1

𝑡0

− ∫ [∫
𝜕𝐻′(𝜏, 𝑥(𝜏), 𝑢(𝜏), 𝜓(𝜏))

𝜕𝑥
𝑑𝜏

𝑡1

𝑡 

] 𝛥𝑥̇(𝑡)𝑑𝑡

𝑡1

𝑡0

− 

− ∫
𝜕𝐻′(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢
∆𝑢(𝑡)𝑑𝑡

𝑡1

𝑡0 

−
1

2
∫ [𝛥𝑥′(𝑡)

𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑥2
𝛥𝑥(𝑡)

𝑡1

𝑡0

+ 

+2𝛥𝑢′(𝑡)
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢𝜕𝑥
𝛥𝑥(𝑡) + 𝛥𝑢′(𝑡)

𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢2
𝛥𝑢(𝑡)] 𝑑𝑡 − 

− ∫ 𝑜2([‖∆𝑥(𝑡)‖ + ‖∆𝑢(𝑡)‖]2)𝑑𝑡

𝑡1

𝑡0

+ ∫ ∫ [∫
𝜕𝐹′(𝜏, 𝑠, 𝑥(𝜏), 𝑥(𝑠))

𝜕𝑎
𝑑𝜏

𝑡1

𝑡 

]

𝑡1

𝑡0

∆𝑥̇(𝑡)𝑑𝑠

𝑡1

𝑡0

𝑑𝑡 + 

+ ∫ ∫ [∫
𝜕𝐹′(𝑠, 𝜏, 𝑥(𝑠), 𝑥(𝜏))

𝜕𝑏
𝑑𝜏

𝑡1

𝑡 

]

𝑡1

𝑡0

∆𝑥̇(𝑡)𝑑𝑠

𝑡1

𝑡0

𝑑𝑡 + 

+
1

2
∫ ∫ [𝛥𝑥′(𝑡)

𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎2
𝛥𝑥(𝑡)

𝑡1

𝑡0

𝑡1

𝑡0

+ 2𝛥𝑥′(𝑡)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎𝜕𝑏
𝛥𝑥(𝑠) + 

+ 𝛥𝑥′(𝑠)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏2
𝛥𝑥(𝑠)] 𝑑𝑠𝑑𝑡 + ∫ ∫ 𝑜3([‖∆𝑥(𝑡)‖ + ‖∆𝑥(𝑠)‖]2)𝑑𝑠

𝑡1

𝑡0

𝑑𝑡

𝑡1

𝑡0

. (2.7) 
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Теперь предположим, что произвольная вектор-функция 𝜓(𝑡)  является решением 

линейного интегрального уравнения 

𝜓(𝑡) = − ∑ 𝛼𝑖(𝑡)
𝜕𝜑′(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖

𝑘

𝑖=1

+ ∫
𝜕𝐻(𝜏, 𝑥(𝜏), 𝑢(𝜏), 𝜓(𝜏))

𝜕𝑥
𝑑𝜏

𝑡1

𝑡 

− 

− ∫ [ ∫
𝜕𝐹(𝜏, 𝑠, 𝑥(𝜏), 𝑥(𝑠))

𝜕𝑎
𝑑𝑠

𝑡1

𝑡0 

]

𝑡1

𝑡

𝑑𝜏 − ∫ [ ∫
𝜕𝐹(𝑠, 𝜏, 𝑥(𝑠), 𝑥(𝜏))

𝜕𝑏

𝑡1

𝑡0 

𝑑𝑠] 𝑑𝜏

𝑡1

𝑡

.  

Тогда формула приращения (2.7) примет вид  

𝐽(𝑢̅) − 𝐽(𝑢) = − ∫
𝜕𝐻′(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢
∆𝑢(𝑡)𝑑𝑡

𝑡1

𝑡0 

+ 

+
1

2
∑ ∑ 𝛥𝑥′(𝑇𝑖)

𝜕2𝜑(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖𝜕𝑥𝑗
𝛥𝑥(𝑇𝑗)

𝑘

𝑗=1

𝑘

𝑖=1

− 

−
1

2
∫ [𝛥𝑥′(𝑡)

𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑥2
𝛥𝑥(𝑡)

𝑡1

𝑡0

+ 

+2𝛥𝑢′(𝑡)
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢𝜕𝑥
𝛥𝑥(𝑡) + 𝛥𝑢′(𝑡)

𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢2
𝛥𝑢(𝑡)] 𝑑𝑡 − 

+
1

2
∫ ∫ [𝛥𝑥′(𝑡)

𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎2
𝛥𝑥(𝑡)

𝑡1

𝑡0

𝑡1

𝑡0

+ 2𝛥𝑥′(𝑡)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎𝜕𝑏
𝛥𝑥(𝑠) + 

+ 𝛥𝑥′(𝑠)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏2
𝛥𝑥(𝑠)] 𝑑𝑠𝑑𝑡 − 

+𝑜1 ([∑‖𝛥𝑥(𝑇𝑖)‖

𝑘

𝑖=1

]

2

) − ∫ 𝑜2([‖∆𝑥(𝑡)‖ + ‖∆𝑢(𝑡)‖]2)𝑑𝑡

𝑡1

𝑡0

+ 

+ ∫ ∫ 𝑜3([‖∆𝑥(𝑡)‖ + ‖∆𝑥(𝑠)‖]2)𝑑𝑠

𝑡1

𝑡0

𝑑𝑡

𝑡1

𝑡0

.                                 (2.8) 

Используя задачу (2.1)–(2.2) по аналогии с [6] можно доказать справедливость 

оценки 

‖∆𝑥(𝑡)‖ ≤ 𝐿 ∫‖∆𝑢(𝜏)‖𝑑𝜏

𝑡

𝑡0

,                                                  (2.9) 

где 𝐿 = 𝑐𝑜𝑛𝑠𝑡 > 0 − некоторая постоянная. 

Далее, в силу гладкости правой части уравнения (1.1) выводится, что 𝛥𝑥(𝑡) явля-

ется решением линеаризованной задачи:  

∆𝑥̇(𝑡) = 𝑓𝑥(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 𝛥𝑥(𝑡) − 𝑓𝑢(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 𝛥𝑢(𝑡) + 

+𝑜4(‖∆𝑥(𝑡)‖ + ‖∆𝑢(𝑡)‖), 𝑡 ∈ 𝑇,                                            (2.10) 

∆𝑥(𝑡0) = 0.                                                                   (2.11) 
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Так как по предложению, область управления 𝑈 выпукло, то специальное прираще-

ние допустимого управления 𝑢(𝑡) можно определить по формуле 

∆𝑢𝜀(𝑡) = 𝜀 [𝑣(𝑡) − 𝑢(𝑡)], 𝑡 ∈ 𝑇.                                             (2.12) 

Здесь 𝑣(𝑡) −  произвольное допустимое управление, а 𝜀 ∈ [0, 1]  произвольное 

число.   

Через ∆𝑥𝜀(𝑡)  обозначим, специальное приращение траектории 𝑥(𝑡) , отвечающее 

специальному приращению (2.12) управления 𝑢(𝑡).  

Учитывая оценку (2.9) и формулу (2.12), с помощью линеаризованной задачи 

(2.10)–(2.11) доказывается справедливость следующего разложения: 

∆𝑥𝜀(𝑡) = 𝜀 𝑙(𝑡) + 𝑜5(𝜀; 𝑡).                                                     (2.13) 

Здесь 𝑙(𝑡) − n-мерная вектор-функция, являющаяся решением задачи 

𝑙(̇𝑡) = 𝑓𝑥(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 𝑙(𝑡) − 𝑓𝑢(𝑡, 𝑥(𝑡), 𝑢(𝑡)) [𝑣(𝑡) − 𝑢(𝑡)], 𝑡 ∈ 𝑇,              (2.14) 

𝑙(𝑡0) = 0.                                                                   (2.15) 

Учитывая формулы (2.12) и (2.13), из формулы приращения (2.8) получаем, что 

𝐽(𝑢 + ∆𝑢𝜀) − 𝐽(𝑢) = −𝜀 ∫
𝜕𝐻′(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢
[𝑣(𝑡) − 𝑢(𝑡)]𝑑𝑡

𝑡1

𝑡0 

+ 

+
𝜀2

2
∑ ∑ 𝑙′(𝑇𝑖)

𝜕2𝜑(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖𝜕𝑥𝑗
𝑙(𝑇𝑗)

𝑘

𝑗=1

𝑘

𝑖=1

− 

−
𝜀2

2
∫ [𝑙′(𝑡)

𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑥2
𝑙(𝑡)

𝑡1

𝑡0

+ 

 

+2[𝑣(𝑡) − 𝑢(𝑡)]′
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢𝜕𝑥
𝑙(𝑡) + 

+ [𝑣(𝑡) − 𝑢(𝑡)]′
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢2
[𝑣(𝑡) − 𝑢(𝑡)]] 𝑑𝑡 + 

+
𝜀2

2
∫ ∫ [𝑙′(𝑡)

𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎2
𝑙(𝑡)

𝑡1

𝑡0

𝑡1

𝑡0

+ 2𝑙′(𝑡)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎𝜕𝑏
𝑙(𝑠) + 

+ 𝑙′(𝑠)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏2
𝑙(𝑠)] 𝑑𝑠𝑑𝑡 + 𝑜(𝜀2).                       (2.16) 

 

 

3. Необходимые условия оптимальности первого и второго порядков 

Специальное разложение (2.16) функционала (1.4) позволяет получить ряд необхо-

димых условий оптимальности первого и второго порядков.  

Пусть 𝑢(𝑡) оптимальное управление. Тогда из разложения (2.16) следует. 

Теорема 1. Для оптимальности допустимого управления 𝑢(𝑡) в задаче (1.1)–(1.4) 

необходимо, чтобы для всех 𝑣(𝑡) ∈ 𝑈, 𝑡 ∈ Т выполнялось неравенство  
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∫
𝜕𝐻′(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢
[𝑣(𝑡) − 𝑢(𝑡)]𝑑𝑡

𝑡1

𝑡0 

≤ 0.                                 (3.1) 

Неравенство (3.1) является аналогом линеаризованного принципа максимума (см., 

например, [3–6]). 

Учитывая произвольность допустимого управления 𝑣(𝑡), и используя неравенство 

(3.1), можно доказать следующую теорему.  

Теорема 2. Для оптимальности допустимого управления 𝑢(𝑡) в рассматриваемой 

задаче необходимо, чтобы неравенство  

𝜕𝐻′(𝜃, 𝑥(𝜃), 𝑢(𝜃), 𝜓(𝜃))

𝜕𝑢
[𝑣 − 𝑢(𝜃)] ≤ 0                                     (3.2) 

выполнялось для всех 𝜃 ∈ [𝑡0,𝑡1) и 𝑣 ∈ 𝑈. 

Доказательство. Пусть 𝑣 ∈ 𝑈 − произвольный вектор, а 𝜀 > 0 − произвольное до-

статочно малое число.  

Тогда произвольное допустимое управление 𝑣(𝑡) можно определить по формуле  

𝑣(𝑡) = {
𝑣, 𝑡 ∈ [𝜃, 𝜃 + 𝜀),

𝑢(𝑡), 𝑡 ∈ 𝑇\[𝜃, 𝜃 + 𝜀).
 

Учитывая эту формулу в неравенстве (3.1) после несложных преобразований, по-

лучим, что  

𝜀
𝜕𝐻′(𝜃,𝑥(𝜃),𝑢(𝜃),𝜓(𝜃))

𝜕𝑢
[𝑣 − 𝑢(𝜃)] + 𝑜(𝜀) ≤ 0. 

Из этого неравенства, в силу произвольности 𝜀 > 0 следует неравенство (3.2). 

Здесь 𝜃 ∈ [𝑡0,𝑡1) является произвольной точкой непрерывности управления 𝑢(𝑡).  

Неравенство (3.2) является аналогом дифференциального принципа максимума 

(см., например, [3, 5]). 

Можно показать, что неравенства (3.1) и (3.2) эквивалентны. 

Перейдем к изучению вырождения аналога линеаризованного условия максимума. 

Определение 1. Если для всех допустимых управлений 𝑣(𝑡) выполняется соотно-

шение  

∫
𝜕𝐻′(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢
[𝑣(𝑡) − 𝑢(𝑡)]𝑑𝑡

𝑡1

𝑡0 

= 0, 

то управление 𝑢(𝑡) назовем квазиособым управлением в задаче (1.1)–(1.4). 

Из разложения (2.16) следует утверждение 

Теорема 3. Для оптимальности квазиособого управления 𝑢(𝑡) необходимо, чтобы 

неравенство  

∑ ∑ 𝑙′(𝑇𝑖)
𝜕2𝜑(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖𝜕𝑥𝑗
𝑙(𝑇𝑗)

𝑘

𝑗=1

𝑘

𝑖=1

+ 

∫ ∫ [𝑙′(𝑡)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎2
𝑙(𝑡)

𝑡1

𝑡0

𝑡1

𝑡0

+ 2𝑙′(𝑡)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎𝜕𝑏
𝑙(𝑠) + 

+ 𝑙′(𝑠)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏2
𝑙(𝑠)] 𝑑𝑠𝑑𝑡 − ∫ [𝑙′(𝑡)

𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑥2
𝑙(𝑡)

𝑡1

𝑡0

+ 

+2[𝑣(𝑡) − 𝑢(𝑡)]′
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢𝜕𝑥
𝑙(𝑡) + 



И. Ф. Нагиева, К. Б. Мансимов 

24 

+ [𝑣(𝑡) − 𝑢(𝑡)]′
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢2
[𝑣(𝑡) − 𝑢(𝑡)]] 𝑑𝑡 ≥ 0                (3.3) 

выполнялось для всех 𝑣(𝑡) ∈ 𝑈, 𝑡 ∈ Т. 

Неравенство (3.3) является неявным необходимым условием оптимальности ква-

зиособых управлений. Из него можно получить необходимое условие оптимальности 

квазиособых управлений, выраженное через параметры рассматриваемой задачи управ-

ления. 

Запишем представление задачи Коши (2.14)–(2.15): 

𝑙(𝑡) = ∫ Ф(𝑡, 𝜏)𝑓𝑢(𝜏, 𝑥(𝜏), 𝑢(𝜏))[𝑣(𝜏) − 𝑢(𝜏)]𝑑𝜏

𝑡

𝑡0

.                               (3.4) 

Здесь Ф(𝑡, 𝜏) (𝑛 × 𝑛) матрица Коши, являющаяся решением задачи  
𝜕Ф(𝑡, 𝜏)

𝜕𝜏
= −Ф(𝑡, 𝜏)𝑓𝑥(𝜏, 𝑥(𝜏), 𝑢(𝜏)), 

Ф(𝑡, 𝑡) = 𝐸, 
где 𝐸 − единичная матрица. 

Введем обозначение 

𝑄(𝑡, 𝜏) = Ф(𝑡, 𝜏)𝑓𝑢(𝜏, 𝑥(𝜏), 𝑢(𝜏)). 

Из представления (3.4) следует, что 

𝑙(𝑇𝑖) = ∫ 𝛼𝑖(𝜏)𝑄(𝑇𝑖, 𝜏)[𝑣(𝜏) − 𝑢(𝜏)]𝑑𝜏

𝑡1

𝑡0

.                                    (3.5) 

Учитывая представление (3.4), получаем, что 

∑ 𝑙′(𝑇𝑖)
𝜕2𝜑(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖𝜕𝑥𝑗
𝑙(𝑇𝑗)

𝑘

𝑖,𝑗=1

= 

= ∫ ∫ [𝑣(𝜏) − 𝑢(𝜏)]′

𝑡1

𝑡0

𝑡1

𝑡0

𝑄′(𝑇𝑖, 𝜏)𝛼𝑖(𝜏)
𝜕2𝜑(𝑥(𝑇1), 𝑥(𝑇2), … , 𝑥(𝑇𝑘))

𝜕𝑥𝑖𝜕𝑥𝑗
× 

× 𝑄(𝑇𝑗 , 𝑠)𝛼𝑗(𝑠)[𝑣(𝑠) − 𝑢(𝑠)]𝑑𝑠𝑑𝜏.                                      (3.6) 

Далее, используя представление (3.4), доказываются тождества 

∫ [𝑣(𝑡) − 𝑢(𝑡)]′
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢𝜕𝑥
𝑙(𝑡)

𝑡1

𝑡0

𝑑𝑡 = 

= ∫ [ ∫[𝑣(𝑡) − 𝑢(𝑡)]′
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢𝜕𝑥
𝑄(𝑡, 𝜏)

𝑡 

𝑡0

[𝑣(𝜏) − 𝑢(𝜏)]𝑑𝜏]

𝑡1

𝑡0

𝑑𝑡,          (3.7) 

∫ 𝑙′(𝑡)
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑥2
𝑙(𝑡)

𝑡1

𝑡0

𝑑𝑡 = ∫ ∫ [𝑣(𝜏) − 𝑢(𝜏)]′

𝑡1

𝑡0

𝑡1

𝑡0

× 

× [ ∫ 𝑄′(𝑡, 𝜏)
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑥2
𝑄(𝑡, 𝑠)𝑑𝑡

𝑡1

max(𝜏,𝑠)

] [𝑣(𝑠) − 𝑢(𝑠)]𝑑𝑠𝑑𝜏,          (3.8) 
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∫ ∫ 𝑙′(𝑡)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎2
𝑙(𝑡)

𝑡1

𝑡0

𝑡1

𝑡0

𝑑𝑠𝑑𝑡 = ∫ ∫ [𝑣(𝛼) − 𝑢(𝛼)]′

𝑡1

𝑡0

𝑡1

𝑡0

× 

× [ ∫ ∫ 𝑄′(𝑡, 𝛼)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎2
𝑄(𝑡, 𝛽)𝑑𝑠

𝑡1

max(𝛼,𝛽)

𝑡1

𝑡0

𝑑𝑡] [𝑣(𝛽) − 𝑢(𝛽)]𝑑𝛼𝑑𝛽,          (3.9) 

 

∫ ∫ 𝑙′(𝑡)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎𝜕𝑏

𝑡1

𝑡0

𝑡1

𝑡0

𝑙(𝑠) = ∫ ∫ [𝑣(𝛼) − 𝑢(𝛼)]′

𝑡1

𝑡0

𝑡1

𝑡0

× 

× [∫ ∫ 𝑄′(𝑡, 𝛼)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎𝜕𝑏
𝑄(𝑠, 𝛽)𝑑𝑠

𝑡1

𝛽

𝑡1

𝛼

𝑑𝑡] [𝑣(𝛽) − 𝑢(𝛽)]𝑑𝛼𝑑𝛽,          (3.10) 

∫ ∫ 𝑙′(𝑡)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏𝜕𝑎

𝑡1

𝑡0

𝑡1

𝑡0

𝑙(𝑠) = ∫ ∫ [𝑣(𝛼) − 𝑢(𝛼)]′

𝑡1

𝑡0

𝑡1

𝑡0

× 

× [∫ ∫ 𝑄′(𝑡, 𝛼)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏𝜕𝑎
𝑄(𝑠, 𝛽)𝑑𝑠

𝑡1

𝛽

𝑡1

𝛼

𝑑𝑡] [𝑣(𝛽) − 𝑢(𝛽)]𝑑𝛼𝑑𝛽,          (3.11) 

∫ ∫ 𝑙′(𝑠)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏2
𝑙(𝑠)

𝑡1

𝑡0

𝑡1

𝑡0

𝑑𝑠𝑑𝑡 = ∫ ∫ [𝑣(𝛼) − 𝑢(𝛼)]′

𝑡1

𝑡0

𝑡1

𝑡0

× 

× [ ∫ ∫ 𝑄′(𝑠, 𝛼)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏2
𝑄(𝑠, 𝛽)𝑑𝑠

𝑡1

max(𝛼,𝛽)

𝑡1

𝑡0

𝑑𝑡] [𝑣(𝛽) − 𝑢(𝛽)]𝑑𝛼𝑑𝛽.          (3.12) 

Здесь, как было отмечено 

𝑄(𝑡, 𝜏) = Ф(𝑡, 𝜏)
𝜕𝑓(𝜏, 𝑥(𝜏), 𝑢(𝜏))

𝜕𝑢
. 

Введем обозначение  

𝐾(𝛼, 𝛽) = −𝑄′(𝑥1, 𝛼)
𝜕2𝜑 (𝑎(𝑥1))

𝜕𝑎2
𝑄(𝑥1, 𝛽) − 

− ∫ [ ∫ 𝑄′(𝑡, 𝛼)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎2
𝑄(𝑡, 𝛽)𝑑𝑡

𝑡1

max(𝛼,𝛽)

]

𝑡1

𝑡0

𝑑𝑠 − 

− ∫ [∫ 𝑄′(𝑡, 𝛼)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑎𝜕𝑏
𝑄(𝑠, 𝛽)𝑑𝑠

𝑡1

𝛽

]

𝑡1

𝛼

𝑑𝑡 − 

− ∫ [∫ 𝑄′(𝑠, 𝛼)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏𝜕𝑎
𝑄(𝑡, 𝛽)𝑑𝑠

𝑡1

𝛽

]

𝑡1

𝛼

𝑑𝑡 − 

− ∫ [ ∫ 𝑄′(𝑠, 𝛼)
𝜕2𝐹(𝑡, 𝑠, 𝑥(𝑡), 𝑥(𝑠))

𝜕𝑏2
𝑄(𝑠, 𝛽)𝑑𝑠

𝑡1

max(𝛼,𝛽)

]

𝑡1

𝑡0

𝑑𝑡 − 
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− ∫ 𝑄′(𝑡, 𝛼)
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑥2
𝑄(𝑡, 𝛽)𝑑𝑡

𝑡1

max(𝛼,𝛽)

. 

Учитывая введенное обозначение и тождества (3.7)–(3.12), неравенство (3.3) пред-

ставляется в виде  

∫ ∫ [𝑣(𝛼) − 𝑢(𝛼)]′𝐾(𝛼, 𝛽)

𝑡1 

𝑡0

[𝑣(𝛽) − 𝑢(𝛽)]𝑑𝛼

𝑡1

𝑡0

𝑑𝛽 + 

+2 ∫ [ ∫[𝑣(𝑡) − 𝑢(𝑡)]′
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢𝜕𝑥
𝑄(𝑡, 𝜏)

𝑡 

𝑡0

[𝑣(𝜏) − 𝑢(𝜏)]𝑑𝜏]

𝑡1

𝑡0

𝑑𝑡 + 

+ ∫ [𝑣(𝑡) − 𝑢(𝑡)]′
𝜕2𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))

𝜕𝑢2
[𝑣(𝑡) − 𝑢(𝑡)]𝑑𝑡

𝑡1

𝑡0

≤ 0.               (3.13) 

Таким образом, доказано следующее утверждение. 

Теорема 4. Для оптимальности квазиособого управления 𝑢(𝑡) в рассматриваемой 

задаче оптимального управления необходимо, чтобы неравенство (3.13) выполнялось для 

всех 𝑣(𝑡) ∈ 𝑈, 𝑡 ∈ Т. 

Как видно, неравенство (3.13) в отличие от неравенства (3.3), носит конструктив-

ный характер. Из этого интегрального необходимого условия оптимальности, используя 

произвольность допустимого управления 𝑣(𝑡), можно получить относительно легко про-

веряемые поточечные необходимые условия оптимальности второго порядка.  

Приведем один из них.  

Теорема 5. Для оптимальности квазиособого управления 𝑢(𝑡) рассматриваемой за-

даче необходимо, чтобы для всех 𝑣 ∈ 𝑈 и 𝜃 ∈ [𝑡0, 𝑡1) выполнялось неравенство  

[𝑣 − 𝑢(𝜃)]′
𝜕2𝐻(𝜃, 𝑥(𝜃), 𝑢(𝜃), 𝜓(𝜃))

𝜕𝑢2
[𝑣 − 𝑢(𝜃)] ≤ 0.                          (3.14) 

Заметим, что ряд необходимых условий оптимальности квазиособых управлений в 

задачах оптимального управления динамика, которые описываются обыкновенными 

дифференциальными уравнениями, с терминальным критерием качества получены в ра-

ботах [3–7]. 

 

Заключение 

В работе, при предположении выпуклости области управления, с помощью квази-

вариаций вычислено специальное приращение второго порядка функционала качества. 

Используя специального приращение функционала качества получены необходимые 

условия оптимальности первого порядка в форме линеаризованного интегрального и 

дифференциального условия оптимальности.  

Доказано общее необходимое условие оптимальности квазиособых управлений, 

носящих конструктивный характер.  

Изучен один частный случай (теорема 5). 

Список источников 

1. Элементы теории оптимальных систем / Моисеев. Н. Н. М.: Наука, 1975. 528 с. 

2. Принцип максимума в оптимальном управлении / Понтрягин Л. С. М.: URSS, 

2024. 72 с. 



Об оптимальности квазиособых управлений в одной задаче… 

27 

3. Методы оптимизации / Габасов Р., Кириллова Ф. М., Альсевич В. В. Минск: Изд-

во "Четыре четверти", 2011. 472 с. ISBN: 978-985-6981-52-7. EDN XTHIJL. 

4. Принцип максимума в теории оптимального управления / Габасов Р., Кирил-

лова Ф. М. М.: URSS, 2018. 272 с. 

5. Особые оптимальные управления / Габасов Р., Кириллова Ф. М. М: URSS, 2013. 

256 с. 

6. Особые управления в системах с запаздыванием / Мансимов К. Б. Баку: ЭЛМ, 

1999. 175 с. 

7. Мансимов К. Б. Многоточечные необходимые условия оптимальности квазиосо-

бых управлений // Автоматика и телемеханика. 1982. № 10. С. 53–58. 

8. Исмайлов Р. Р., Мансимов К. Б. Об условиях оптимальности в одной ступенчатой 

задаче управления // Журн. вычисл. матем. и матем. физики. 2006. Т. 46, № 10. 

С. 1674–1686. 

9. Нагиева И. Ф., Мансимов К. Б. Необходимые условия оптимальности особых 

управлений в задаче управления типа Моисеева // Проблемы управления и инфор-

матики. 2006. № 5. С. 52–63. 

10. Мансимов К. Б., Нагиева И. Ф. Необходимые условия оптимальности первого и 

второго порядков в одной задаче оптимального управления с нетипичным крите-

рием качества // Вестник Томского унив. Управление, техника и информатика. 

2023. № 64. С. 11–20. DOI 10.17223/19988605/64/2. EDN GHXADE. 

11. Mansimov K. B., Nagiyeva I. F. Analogue of Eulers equation and second order optimal-

ity conditions in one N. N. Mouseyev type control problems // Informatics and control 

problems. 2023. Issue 2. P. 67−77. 

References 

1. Moiseev, N. N. (1975), Elements of the Theory of Optimal Systems, Nauka, Moscow, 

528 p. 

2. Pontryagin, L. S. (2024), The Maximum Principle in Optimal Control, URSS, Moscow, 

72 p. 

3. Gabasov, R., Kirillova, F. M. and Alsevich, V. V. (2011), Optimization Methods, Four 

Quarters Publishing House, Minsk, 472 p. 

4. Gabasov, R. and Kirillova, F. M. (2018), The Maximum Principle in Optimal Control 

Theory, URSS, Moscow, 272 p. 

5. Gabasov, R. and Kirillova, F. M. (2013), Special Optimal Controls, URSS, Mos-

cow, 256 p. 

6. Mansimov, K. B. (1999), Singular controls in systems with delay, ELM, Baku, 175 p. 

7. Mansimov, K. B. (1982), "Multipoint necessary optimality conditions for quasi-singular 

controls", Automation and Telemechanics, no 10, pp. 53−58. 

8. Ismailov, R. R. and Mansimov, K. B., (2006), "On optimality conditions in one-step 

control problem", Zhurn. Vychisl. Mat. i Mathematical Physics, vol. 46, no 10, 

pp. 1674–1686. 

9. Nagieva, I. F. and Mansimov, K. B. (2006), "Necessary optimality conditions for singu-

lar controls in a Moiseyev-type control problem", Problems of Control and Informatics, 

no 5, pp. 52−63. 

10. Mansimov, K. B. and Nagieva, I. F. (2023) "Necessary optimality conditions of the first 

and second orders in one optimal control problem with an atypical quality criterion", 

Bulletin of Tomsk University. Series: Management, Engineering and Informatics, is-

sue 64, pp. 11−20. 



И. Ф. Нагиева, К. Б. Мансимов 

28 

11. Mansimov, K. B. and Nagiyeva, I.  F. (2023) "Analogue of Eulers equation and second-

order optimality conditions in one N. N. Mouseyev type control problems", Informatics 

and control problems, issue 2, pp. 67−77. 

Информация об авторах:  

И. Ф. Нагиева – научный сотрудник лаборатории "Методы управления в сложных ди-

намических системах" института Систем управления Министерства Науки и Образо-

вания Азербайджана (Азербайджан, AZ 1141, г. Баку, ул. Бахтияра Вагабзаде, д. 68); 

К. Б. Мансимов – доктор физико-математических наук, профессор, заведующий лабо-

раторией "Методы управления в сложных динамических системах" института Систем 

управления Министерства Науки и Образования Азербайджана (Азербайджан, AZ 

1141, г. Баку, ул. Бахтияра Вагабзаде, д. 68), AuthorID247352. 

Information about the authors:  

I. F. Nagiyeva – research fellow of the laboratory "Control Methods in Complex Dynamic 

Systems" of the Institute of Control Systems of the Ministry of Science and Education of 

Azerbaijan (68, B. Vagabzade St., Baku, Azerbaijan, AZ1141); 

К. B. Mansimov – Doctor of Sciences (Physical and Mathematical), Professor, Head of the 

Laboratory "Control in Complex Dynamical Systems" of the Institute of Control Systems of 

the Ministry of Science and Education of Azerbaijan (68, B. Vagabzade St., Baku, Azerbai-

jan, AZ1141), AuthorID 247352; 

 


